Home > Numerical methods calculators > Numerical Interpolation using Forward, Backward, Divided Difference, Lagrange's method calculator

Method and examples
Numerical interpolation using Newton's Forward Difference formula
Find
Method  
 
Type your data in either horizontal or verical format,

OR
Rows :
Click On Generate
x =
Option :
  1. X18911901191119211931
    f(x)46668193101
    and x=1895
  2. X0.10.20.30.40.5
    f(x)20.02502110.0501306.7421105.1010504.127060
    and x=0.15
  3. X3456789
    f(x)2.76.412.521.634.351.272.9
    and x=1
  4. X1015202530
    f(x)0.10030.15110.2270.25530.3093
    and x=12
f(x) =
x1 = and x2 =
x =
Step value (h) =   OR  Inverval (N) =
=
Option :
  1. `f(x)=2x^3-4x+1`
    x1 = 2 and x2 = 4
    x = 3.8
    Step value (h) = 1
    or N = 5
  2. `f(x)=2x^3-4x+1`
    x1 = 2 and x2 = 4
    x = 2.1
    Step value (h) = 1
    or N = 8
  3. `f(x)=x^3-x+1`
    x1 = 2 and x2 = 4
    x = 3.8
    Step value (h) = 1
    or N = 5
  4. `f(x)=x^3-x+1`
    x1 = 2 and x2 = 4
    x = 2.1
    Step value (h) = 1
    or N = 8
  5. `f(x)=x^3+x+2`
    x1 = 2 and x2 = 4
    x = 3.8
    Step value (h) = 1
    or N = 5
  6. `f(x)=x^3+x+2`
    x1 = 2 and x2 = 4
    x = 2.1
    Step value (h) = 1
    or N = 8
  7. `f(x)=sin(x)`
    x1 = 0 and x2 = 1.57
    x = 2
    Step value (h) = 1
    or N = 8
  8. `f(x)=cos(x)`
    x1 = 0 and x2 = 1.57
    x = 2
    Step value (h) = 1
    or N = 8
Decimal Place =
Trigonometry Function Mode =




Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.