Home > Numerical methods calculators > Numerical Interpolation using Stirling's formula calculator

Method and examples
Numerical interpolation using Stirling's formula
Find
Method  
 
Type your data in either horizontal or verical format,

OR
Rows :
xy = f(x)
x =
Option :

For next step calucation, use previous value
Print Digit =
SolutionHelp
Numerical interpolation using Stirling's formula calculator
1. Using Stirling's interpolation formula, find f(12.2)
x1011121314
f0.239670.280600.317880.352090.38368

2. Using Stirling's interpolation formula, find f(16)
x051015202530
f00.08750.17630.26790.36400.46630.5774


Example
1. Find Solution using Stirling's formula
xf(x)
2049225
2548316
3047236
3545926
4044306

x = 28


Solution:
The value of table for x and y

x2025303540
y4922548316472364592644306

Stirling's method to find solution

h=25-20=5

Taking x_0=30 then p=(x-x_0)/h=(x-30)/5

The difference table is
xp=(x-30)/5yDeltayDelta^2yDelta^3yDelta^4y
20-249225
-909
25-148316-171
-1080-59
30047236-230-21
-1310-80
35145926-310
-1620
40244306


x = 28

p = (x - x_0)/h = (28 - 30)/5 = -0.4

y_0=47236, Delta y_0=-1310,Delta^2y_(-1)=-230,Delta^3y_(-1)=-80,Delta^4y_(-2)=-21

Stirling's formula is
y_p=y_0+p*(Delta y_0+Delta y_(-1))/2 + (p^2)/(2!) * Delta^2y_(-1) + (p(p^2 - 1^2))/(3!) * (Delta^3y_(-1)+Delta^3y_(-2))/2 + (p^2(p^2 - 1^2))/(4!) * Delta^4y_(-2)

y_(-0.4) = 47236 + (-0.4)*((-1310-1080))/2 + ((0.16))/(2)*(-230) + ((-0.4)(0.16 - 1))/(6)*((-80-59))/2 + ((0.16)(0.16 - 1))/(24)*(-21)

y_(-0.4)=47236+478 -18.4 -3.892 +0.1176

y_(-0.4)=47691.8256


Solution of Stirling's interpolation is y(28) = 47691.8256




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.