|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Solve numerical differential equation using Runge-Kutta 2 method (1st order derivative) calculator
|
1. Find y(0.5) for `y'=-2x-y`, y(0) = -1, with step length 0.1
2. Find y(2) for `y'=(x-y)/2`, y(0) = 1, with step length 0.2
3. Find y(0.3) for `y'=-(x*y^2+y)`, y(0) = 1, with step length 0.1
4. Find y(0.2) for `y'=-y`, y(0) = 1, with step length 0.1
|
Example1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Runge-Kutta 2 method (1st order derivative) Solution:Given `y'=(x-y)/(2), y(0)=1, h=0.1, y(0.2)=?` Method-1 : Using formula `k_2=hf(x_0+h,y_0+k_1)`Second order Runge-Kutta (RK2) method formula `k_1=hf(x_n,y_n)` `k_2=hf(x_n+h,y_n+k_1)` `y_(n+1)=y_n+(k_1+k_2)/2`
for `n=0,x_0=0,y_0=1` `k_1=hf(x_0,y_0)` `=(0.1)f(0,1)` `=(0.1)*(-0.5)` `=-0.05` `k_2=hf(x_0+h,y_0+k_1)` `=(0.1)f(0.1,0.95)` `=(0.1)*(-0.425)` `=-0.0425` `y_1=y_0+(k_1+k_2)/2` `=1-0.0462` `=0.9538` `x_1=x_0+h=0+0.1=0.1`
for `n=1,x_1=0.1,y_1=0.9538` `k_1=hf(x_1,y_1)` `=(0.1)f(0.1,0.9538)` `=(0.1)*(-0.4269)` `=-0.0427` `k_2=hf(x_1+h,y_1+k_1)` `=(0.1)f(0.2,0.9111)` `=(0.1)*(-0.3555)` `=-0.0356` `y_2=y_1+(k_1+k_2)/2` `=0.9538-0.0391` `=0.9146` `x_2=x_1+h=0.1+0.1=0.2` `:.y(0.2)=0.9146` | `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` | | 0 | 0 | 1 | -0.05 | -0.0425 | 0.1 | 0.9538 | | 1 | 0.1 | 0.9538 | -0.0427 | -0.0356 | 0.2 | 0.9146 |
Method-2 : Using formula `k_2=hf(x_0+h/2,y_0+k_1/2)`Second order Runge-Kutta (RK2) method formula `k_1=hf(x_n,y_n)` `k_2=hf(x_n+h/2,y_n+k_1/2)` `y_(n+1)=y_n+k_2`
for `n=0,x_0=0,y_0=1` `k_1=hf(x_0,y_0)` `=(0.1)f(0,1)` `=(0.1)*(-0.5)` `=-0.05` `k_2=hf(x_0+h/2,y_0+k_1/2)` `=(0.1)f(0.05,0.975)` `=(0.1)*(-0.4625)` `=-0.0462` `y_1=y_0+k_2` `=1-0.0462` `=0.9538` `x_1=x_0+h=0+0.1=0.1`
for `n=1,x_1=0.1,y_1=0.9538` `k_1=hf(x_1,y_1)` `=(0.1)f(0.1,0.9538)` `=(0.1)*(-0.4269)` `=-0.0427` `k_2=hf(x_1+h/2,y_1+k_1/2)` `=(0.1)f(0.15,0.9324)` `=(0.1)*(-0.3912)` `=-0.0391` `y_2=y_1+k_2` `=0.9538-0.0391` `=0.9146` `x_2=x_1+h=0.1+0.1=0.2` `:.y(0.2)=0.9146` | `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` | | 0 | 0 | 1 | -0.05 | -0.0462 | 0.1 | 0.9538 | | 1 | 0.1 | 0.9538 | -0.0427 | -0.0391 | 0.2 | 0.9146 |
|
|
Input functions
|
| Sr No. |
Function |
Input value |
| 1. |
`x^3` |
x^3 |
| 2. |
`sqrt(x)` |
sqrt(x) |
| 3. |
`root(3)(x)`
|
root(3,x)
|
| 4. |
sin(x) |
sin(x) |
| 5. |
cos(x) |
cos(x) |
| 6. |
tan(x) |
tan(x) |
| 7. |
sec(x) |
sec(x) |
| 8. |
cosec(x) |
csc(x) |
| 9. |
cot(x) |
cot(x) |
| 10. |
`sin^(-1)(x)` |
asin(x) |
| 11. |
`cos^(-1)(x)` |
acos(x) |
| 12. |
`tan^(-1)(x)` |
atan(x) |
| 13. |
`sin^2(x)` |
sin^2(x) |
| 14. |
`log_y(x)` |
log(y,x) |
| 15. |
`log_10(x)` |
log(x) |
| 16. |
`log_e(x)` |
ln(x) |
| 17. |
`e^x` |
exp(x) or e^x |
| 18. |
`e^(2x)` |
exp(2x) or e^(2x) |
| 19. |
`oo` |
inf |
|
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|