Method and examples
Method
 
Solve numerical differential equation using Runge-Kutta 3 method (1st order derivative)
`y'=f(x,y)` =
x0 = , y0 =
 xn =
Step value (h) =
Find 
  1. `y'=-2x-y`
    x0 = 0, y0 = -1
    xn = 0.5
    Step value (h) = 0.1
  2. `y'=(x-y)/2`
    x0 = 0, y0 = 1
    xn = 0.2
    Step value (h) = 0.1
  3. `y'=-(x*y^2+y)`
    x0 = 0, y0 = 1
    xn = 0.3
    Step value (h) = 0.1
  4. `y'=-y`
    x0 = 0, y0 = 1
    xn = 0.2
    Step value (h) = 0.1
  5. `y'=x-y^2`
    x0 = 0, y0 = 1
    xn = 0.2
    Step value (h) = 0.1
  6. `y'=x^2-y`
    x0 = 0, y0 = 1
    xn = 0.2
    Step value (h) = 0.1
  7. `y'=x^2y-1`
    x0 = 0, y0 = 1
    xn = 0.2
    Step value (h) = 0.1
Decimal Place =
Trigonometry Function Mode =




Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.