|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solve numerical differential equation using Runge-Kutta 3 method (1st order derivative) calculator
|
1. Find y(0.5) for `y'=-2x-y`, y(0) = -1, with step length 0.1
2. Find y(2) for `y'=(x-y)/2`, y(0) = 1, with step length 0.2
3. Find y(0.3) for `y'=-(x*y^2+y)`, y(0) = 1, with step length 0.1
4. Find y(0.2) for `y'=-y`, y(0) = 1, with step length 0.1
|
Example1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Runge-Kutta 3 method (1st order derivative)
Solution: Given `y'=(x-y)/2, y(0)=1, h=0.1, y(0.2)=?`
Third order R-K method `k_1=hf(x_0,y_0)=(0.1)f(0,1)=(0.1)*(-0.5)=-0.05`
`k_2=hf(x_0+h/2,y_0+k_1/2)=(0.1)f(0.05,0.975)=(0.1)*(-0.4625)=-0.04625`
`k_3=hf(x_0+h,y_0+2k_2-k_1)=(0.1)f(0.1,0.9575)=(0.1)*(-0.42875)=-0.04288`
`y_1=y_0+1/6(k_1+4k_2+k_3)`
`y_1=1+1/6[-0.05+4(-0.04625)+(-0.04288)]`
`y_1=0.95369`
`:.y(0.1)=0.95369`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=hf(x_1,y_1)=(0.1)f(0.1,0.95369)=(0.1)*(-0.42684)=-0.04268`
`k_2=hf(x_1+h/2,y_1+k_1/2)=(0.1)f(0.15,0.93235)=(0.1)*(-0.39117)=-0.03912`
`k_3=hf(x_1+h,y_1+2k_2-k_1)=(0.1)f(0.2,0.91814)=(0.1)*(-0.35907)=-0.03591`
`y_2=y_1+1/6(k_1+4k_2+k_3)`
`y_2=0.95369+1/6[-0.04268+4(-0.03912)+(-0.03591)]`
`y_2=0.91451`
`:.y(0.2)=0.91451`
`:.y(0.2)=0.91451`
|
Input functions
|
Sr No. |
Function |
Input value |
1. |
`x^3` |
x^3 |
2. |
`sqrt(x)` |
sqrt(x) |
3. |
`root(3)(x)`
|
root(3,x)
|
4. |
sin(x) |
sin(x) |
5. |
cos(x) |
cos(x) |
6. |
tan(x) |
tan(x) |
7. |
sec(x) |
sec(x) |
8. |
cosec(x) |
csc(x) |
9. |
cot(x) |
cot(x) |
10. |
`sin^(-1)(x)` |
asin(x) |
11. |
`cos^(-1)(x)` |
acos(x) |
12. |
`tan^(-1)(x)` |
atan(x) |
13. |
`sin^2(x)` |
sin^2(x) |
14. |
`log_y(x)` |
log(y,x) |
15. |
`log_10(x)` |
log(x) |
16. |
`log_e(x)` |
ln(x) |
17. |
`e^x` |
exp(x) or e^x |
18. |
`e^(2x)` |
exp(2x) or e^(2x) |
19. |
`oo` |
inf |
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|