|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Solve numerical differential equation using Euler method (2nd order derivative) calculator
|
1. Find y(1) for `y''=-4z-4y`, `x_0=0, y_0=0, z_0=1`, with step length 0.1
2. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1
3. Find y(0.2) for `y''=xz^2-y^2`, `x_0=0, y_0=1, z_0=0`, with step length 0.2
|
Example1. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1 using Euler method (2nd order derivative)
Solution: Given `y^('')=1+2xy-x^2z, y(0)=1, y'(0)=0, h=0.1, y(0.1)=?`
put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)`
We have system of equations `(dy)/(dx)=z=f(x,y,z)`
`(dz)/(dx)=1+2xy-x^2z=g(x,y,z)`
Euler method for second order differential equation `y_1=y_0+hf(x_0,y_0,z_0)=1+(0.1)*f(0,1,0)=1+(0.1)*(0)=1+(0)=1`
`:.y(0.1)=1`
|
Input functions
|
Sr No. |
Function |
Input value |
1. |
`x^3` |
x^3 |
2. |
`sqrt(x)` |
sqrt(x) |
3. |
`root(3)(x)`
|
root(3,x)
|
4. |
sin(x) |
sin(x) |
5. |
cos(x) |
cos(x) |
6. |
tan(x) |
tan(x) |
7. |
sec(x) |
sec(x) |
8. |
cosec(x) |
csc(x) |
9. |
cot(x) |
cot(x) |
10. |
`sin^(-1)(x)` |
asin(x) |
11. |
`cos^(-1)(x)` |
acos(x) |
12. |
`tan^(-1)(x)` |
atan(x) |
13. |
`sin^2(x)` |
sin^2(x) |
14. |
`log_y(x)` |
log(y,x) |
15. |
`log_10(x)` |
log(x) |
16. |
`log_e(x)` |
ln(x) |
17. |
`e^x` |
exp(x) or e^x |
18. |
`e^(2x)` |
exp(2x) or e^(2x) |
19. |
`oo` |
inf |
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|