|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Solve numerical differential equation using Midpoint Euler method (2nd order derivative) calculator
|
1. Find y(1) for `y''=-4z-4y`, `x_0=0, y_0=0, z_0=1`, with step length 0.1
2. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1
3. Find y(0.2) for `y''=xz^2-y^2`, `x_0=0, y_0=1, z_0=0`, with step length 0.2
|
Example1. Find y(0.2) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1 using Midpoint Euler method (2nd order derivative) Solution:Given `y^('')=1+2xy-x^2z, y(0)=1, y'(0)=0, h=0.1, y(0.2)=?` put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)` We have system of equations `(dy)/(dx)=z=f(x,y,z)` `(dz)/(dx)=1+2xy-x^2z=g(x,y,z)` Here, `x_0=0,y_0=1,z_0=0,h=0.1,x_n=0.2` Midpoint Euler method for second order differential equation formula `y_(n+1)=y_n+h k_(2y)` `k_(1y)=f(x_n,y_n,z_n)` `k_(2y)=f(x_n+h/2,y_n+h/2 k_(1y),z_n+h/2 k_(1z))` `z_(n+1)=z_n+h k_(2z)` `k_(1z)=g(x_n,y_n,z_n)` `k_(2z)=g(x_n+h/2,y_n+h/2 k_(1y),z_n+h/2 k_(1z))`
for `n=0,x_0=0,y_0=1,z_0=0` `k_(1y)=f(x_0,y_0,z_0)` `=f(0,1,0)` `=0` `k_(1z)=g(x_0,y_0,z_0)` `=g(0,1,0)` `=1` `k_(2y)=f(x_0+h/2,y_0+h/2 k_(1y),z_0+h/2 k_(1z))` `=f(0+0.1/2,1+0.1/2 *0,0+0.1/2 *1)` `=f(0.05,1,0.05)` `=0.05` `k_(2z)=g(x_0+h/2,y_0+h/2 k_(1y),z_0+h/2 k_(1z))` `=g(0+0.1/2,1+0.1/2 *0,0+0.1/2 *1)` `=g(0.05,1,0.05)` `=1.0999` `y_(1)=y_0+h k_(2y)` `=1+0.1*0.05` `=1.005` `z_(1)=z_0+h k_(2z)` `=0+0.1*1.0999` `=0.11` `x_1=x_0+h=0+0.1=0.1`
for `n=1,x_1=0.1,y_1=1.005,z_1=0.11` `k_(1y)=f(x_1,y_1,z_1)` `=f(0.1,1.005,0.11)` `=0.11` `k_(1z)=g(x_1,y_1,z_1)` `=g(0.1,1.005,0.11)` `=1.1999` `k_(2y)=f(x_1+h/2,y_1+h/2 k_(1y),z_1+h/2 k_(1z))` `=f(0.1+0.1/2,1.005+0.1/2 *0.11,0.11+0.1/2 *1.1999)` `=f(0.15,1.0105,0.17)` `=0.17` `k_(2z)=g(x_1+h/2,y_1+h/2 k_(1y),z_1+h/2 k_(1z))` `=g(0.1+0.1/2,1.005+0.1/2 *0.11,0.11+0.1/2 *1.1999)` `=g(0.15,1.0105,0.17)` `=1.2993` `y_(2)=y_1+h k_(2y)` `=1.005+0.1*0.17` `=1.022` `x_2=x_1+h=0.1+0.1=0.2` `:.y(0.2)=1.022` | `n` | `x_n` | `y_n` | `z_n` | `x_(n+1)` | `y_(n+1)` | `z_(n+1)` | | 0 | 0 | 1 | 0 | 0.1 | 1.005 | 0.11 | | 1 | 0.1 | 1.005 | 0.11 | 0.2 | 1.022 | |
|
|
Input functions
|
| Sr No. |
Function |
Input value |
| 1. |
`x^3` |
x^3 |
| 2. |
`sqrt(x)` |
sqrt(x) |
| 3. |
`root(3)(x)`
|
root(3,x)
|
| 4. |
sin(x) |
sin(x) |
| 5. |
cos(x) |
cos(x) |
| 6. |
tan(x) |
tan(x) |
| 7. |
sec(x) |
sec(x) |
| 8. |
cosec(x) |
csc(x) |
| 9. |
cot(x) |
cot(x) |
| 10. |
`sin^(-1)(x)` |
asin(x) |
| 11. |
`cos^(-1)(x)` |
acos(x) |
| 12. |
`tan^(-1)(x)` |
atan(x) |
| 13. |
`sin^2(x)` |
sin^2(x) |
| 14. |
`log_y(x)` |
log(y,x) |
| 15. |
`log_10(x)` |
log(x) |
| 16. |
`log_e(x)` |
ln(x) |
| 17. |
`e^x` |
exp(x) or e^x |
| 18. |
`e^(2x)` |
exp(2x) or e^(2x) |
| 19. |
`oo` |
inf |
|
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|