|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
|
|
Solve numerical differential equation using Taylor Series method (2nd order derivative) calculator
|
1. Find y(1) for `y''=-4z-4y`, `x_0=0, y_0=0, z_0=1`, with step length 0.1
2. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1
3. Find y(0.2) for `y''=xz^2-y^2`, `x_0=0, y_0=1, z_0=0`, with step length 0.2
|
Example1. Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1 using Taylor Series method (2nd order derivative) Solution:Given `y^('')=1+2xy-x^2z, y(0)=1, y'(0)=0, h=0.1, y(0.1)=?` put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)` We have system of equations `(dy)/(dx)=z=f(x,y,z)` `(dz)/(dx)=1+2xy-x^2z=g(x,y,z)` Here, `x_0=0,y_0=1,z_0=0,h=0.1,x_n=0.1` Differentiating successively, we get Derivative steps`d/(dx)(1+2xy-x^2y')` `=d/(dx)(1)+d/(dx)(2xy)-d/(dx)(x^2y')` `d/(dx)(2xy)=2y+2xy'``d/(dx)(2xy)`
`=2*(d/(dx)(x))y+2x(d/(dx)(y))`
`=2*1y+2x(y')`
`=2y+2xy'` `d/(dx)(x^2y')=2xy'+x^2y''``d/(dx)(x^2y')`
`=(d/(dx)(x^2))y'+x^2(d/(dx)(y'))`
`=(2x)y'+x^2(y'')`
`=2xy'+x^2y''` `=0+(2y+2xy')-(2xy'+x^2y'')` `=0+2y+2xy'-2xy'-x^2y''` `=2y-x^2y''` Now, `d^2/(dx^2)(1+2xy-x^2y')=d/(dx)(2y-x^2y'')` `=d/(dx)(2y)-d/(dx)(x^2y'')` `d/(dx)(x^2y'')=2xy''+x^2y'''``d/(dx)(x^2y'')`
`=(d/(dx)(x^2))y''+x^2(d/(dx)(y''))`
`=(2x)y''+x^2(y''')`
`=2xy''+x^2y'''` `=2y'-(2xy''+x^2y''')` `=2y'-2xy''-x^2y'''` `y'=1+2xy-x^2y'` `y''=1+2xy-x^2y'` `y'''=2y-x^2y''` `y^(iv)=2y'-2xy''-x^2y'''` Now substituting, we get `y_0''=1+2x_0y_0-x_0^2y_0'=1` `y_0'''=2y_0-x_0^2y_0''=2` `y_0^(iv)=2y_0'-2x_0y_0''-x_0^2y_0'''=0` Putting these values in Taylor Series, we have `y_1 = y_0 + hy_0' + h^2/(2!) y_0'' + h^3/(3!) y_0''' + h^4/(4!) y_0^(iv) + ...`
for `n=0,x_0=0,y_0=1,y_0'=0` `=1+0.1*(0)+(0.1)^2/(2)*(1)+(0.1)^3/(6)*(2)+(0.1)^4/(24)*(0)+...` `=1+0+0.005+0+0+...` `=1.0053` `x_1=x_0+h=0+0.1=0.1` `:.y(0.1)=1.0053` | `n` | `x_n` | `y_n` | `y_n'` | `y_n''` | `y_n'''` | `y_n^(iv)` | `x_(n+1)` | `y_(n+1)` | | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0.1 | 1.0053 |
|
|
Input functions
|
| Sr No. |
Function |
Input value |
| 1. |
`x^3` |
x^3 |
| 2. |
`sqrt(x)` |
sqrt(x) |
| 3. |
`root(3)(x)`
|
root(3,x)
|
| 4. |
sin(x) |
sin(x) |
| 5. |
cos(x) |
cos(x) |
| 6. |
tan(x) |
tan(x) |
| 7. |
sec(x) |
sec(x) |
| 8. |
cosec(x) |
csc(x) |
| 9. |
cot(x) |
cot(x) |
| 10. |
`sin^(-1)(x)` |
asin(x) |
| 11. |
`cos^(-1)(x)` |
acos(x) |
| 12. |
`tan^(-1)(x)` |
atan(x) |
| 13. |
`sin^2(x)` |
sin^2(x) |
| 14. |
`log_y(x)` |
log(y,x) |
| 15. |
`log_10(x)` |
log(x) |
| 16. |
`log_e(x)` |
ln(x) |
| 17. |
`e^x` |
exp(x) or e^x |
| 18. |
`e^(2x)` |
exp(2x) or e^(2x) |
| 19. |
`oo` |
inf |
|
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|