|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Chinese Remainder Theorem calculator
|
1. Chinese Remainder Theorem
1. x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)
2. x=4 (mod 10),x=6 (mod 13),x=4 (mod 7),x=2 (mod 11)
3. x=6 (mod 11),x=13 (mod 16),x=9 (mod 21),x=19 (mod 25)
4. 3x=7 (mod 10)
5. 3x=6 (mod 12)
6. 2x=5 (mod 7),3x=4 (mod 8)
7. 2x=1 (mod 3),3x=5 (mod 8)
8. 2x=6 (mod 14),3x=9 (mod 15),5x=20 (mod 60)
9. x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
10. x=1 (mod 4),x=0 (mod 6)
2. Modulo
1. 42 mod 5
2. 3^302 mod 5
3. 19^24 mod 21
4. 7^106 mod 143
5. 27^400 mod 619
6. 42^-1 mod 5
3. Extended Euclidean Algorithm, Euclid's Algorithm, Modular multiplicative inverse
1. 11 and 12
2. 7 and 11
3. 3 and 7
|
Example1. Chinese Remainder Theorem to solve x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)Solution:x-=2\ ("mod "5)->(1)x-=3\ ("mod "7)->(2)x-=10\ ("mod "11)->(3)a_1=2,a_2=3,a_3=10n_1=5,n_2=7,n_3=11Check if each n_i is pairwise coprimeGCD(5,7)=1GCD(5,11)=1GCD(7,11)=1since all gcd is 1, so each n_i is pairwise coprime There is a unique solution modulo NN=n_1*n_2*n_3=5*7*11=385Step-1: z_i = N / n_iz_1 = N / n_1=385/5=77z_2 = N / n_2=385/7=55z_3 = N / n_3=385/11=35Step-2: find y_i-=z_i^(-1)\ ("mod " n_i) using Extended Euclidean Algorithmy_1-=z_1^(-1)\ ("mod "n_1)-=77^(-1)\ ("mod "5)-=2^(-1)\ ("mod "5)-=-2\ ("mod "5)t=-2i | Quotient q=r_1-:r_2 | Remainder r=r_1-q*r_2 | s=s_1-q*s_2 | t=t_1-q*t_2 | 1 | | 5 | 1 | 0 | 2 | | 77 | 0 | 1 | 3 | 5-:77=0 | 5-0xx77=5 | 1-0xx0=1 | 0-0xx1=0 | 4 | 77-:5=15 | 77-15xx5=2 | 0-15xx1=-15 | 1-15xx0=1 | 5 | 5-:2=2 | 5-2xx2=1 | 1-2xx-15=31 | 0-2xx1=-2 | 6 | 2-:1=2 | 2-2xx1=0 | -15-2xx31=-77 | 1-2xx-2=5 |
we get answer by taking the last non-zero row for Remainder r, t=-2 y_2-=z_2^(-1)\ ("mod "n_2)-=55^(-1)\ ("mod "7)-=6^(-1)\ ("mod "7)-=-1\ ("mod "7)t=-1i | Quotient q=r_1-:r_2 | Remainder r=r_1-q*r_2 | s=s_1-q*s_2 | t=t_1-q*t_2 | 1 | | 7 | 1 | 0 | 2 | | 55 | 0 | 1 | 3 | 7-:55=0 | 7-0xx55=7 | 1-0xx0=1 | 0-0xx1=0 | 4 | 55-:7=7 | 55-7xx7=6 | 0-7xx1=-7 | 1-7xx0=1 | 5 | 7-:6=1 | 7-1xx6=1 | 1-1xx-7=8 | 0-1xx1=-1 | 6 | 6-:1=6 | 6-6xx1=0 | -7-6xx8=-55 | 1-6xx-1=7 |
we get answer by taking the last non-zero row for Remainder r, t=-1 y_3-=z_3^(-1)\ ("mod "n_3)-=35^(-1)\ ("mod "11)-=2^(-1)\ ("mod "11)-=-5\ ("mod "11)t=-5i | Quotient q=r_1-:r_2 | Remainder r=r_1-q*r_2 | s=s_1-q*s_2 | t=t_1-q*t_2 | 1 | | 11 | 1 | 0 | 2 | | 35 | 0 | 1 | 3 | 11-:35=0 | 11-0xx35=11 | 1-0xx0=1 | 0-0xx1=0 | 4 | 35-:11=3 | 35-3xx11=2 | 0-3xx1=-3 | 1-3xx0=1 | 5 | 11-:2=5 | 11-5xx2=1 | 1-5xx-3=16 | 0-5xx1=-5 | 6 | 2-:1=2 | 2-2xx1=0 | -3-2xx16=-35 | 1-2xx-5=11 |
we get answer by taking the last non-zero row for Remainder r, t=-5 Step-3: The solution, which is unique modulo 385, isx-=a_1*y_1*z_1+a_2*y_2*z_2+a_3*y_3*z_3\ ("mod "385):.x-=2*-2*77+3*-1*55+10*-5*35\ ("mod "385):.x-=-308-165-1750\ ("mod "385):.x-=-2223\ ("mod "385):.x-=87\ ("mod "385) Method-2: Successive substitution methodx-=2\ ("mod "5)->(1)x-=3\ ("mod "7)->(2)x-=10\ ("mod "11)->(3)from (1) x-=2\ ("mod "5)Hence x=2+5aNow from (2), x-=3\ ("mod "7):. (2+5a)-=3\ ("mod "7):. 5a-=1\ ("mod "7)Here 5^(-1)-=3\ ("mod "7):. 3xx5a-=3xx1\ ("mod "7):. 15a-=3\ ("mod "7):. a-=3\ ("mod "7)Hence a=3+7bBut x=2+5a:.x=2+5(3+7b):.x=2+15+35b:.x=17+35bNow from (3), x-=10\ ("mod "11):. (17+35b)-=10\ ("mod "11):. 6+2b-=10\ ("mod "11):. 2b-=4\ ("mod "11)Here 2^(-1)-=6\ ("mod "11):. 6xx2b-=6xx4\ ("mod "11):. 12b-=24\ ("mod "11):. b-=2\ ("mod "11)Hence b=2+11cBut x=17+35b:.x=17+35(2+11c):.x=17+70+385c:.x=87+385c:.x-=87\ ("mod "385)
|
|
|
|
|