Home > College Algebra calculators > Chinese Remainder Theorem calculator

Method and examples
Chinese Remainder Theorem
Method  

1. Chinese Remainder Theorem

2. Modulo

3. Extended Euclidean Algorithm
z =
n =

SolutionHelp
Chinese Remainder Theorem calculator
1. Chinese Remainder Theorem

1. x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)
2. x=4 (mod 10),x=6 (mod 13),x=4 (mod 7),x=2 (mod 11)
3. x=6 (mod 11),x=13 (mod 16),x=9 (mod 21),x=19 (mod 25)
4. 3x=7 (mod 10)
5. 3x=6 (mod 12)
6. 2x=5 (mod 7),3x=4 (mod 8)
7. 2x=1 (mod 3),3x=5 (mod 8)
8. 2x=6 (mod 14),3x=9 (mod 15),5x=20 (mod 60)
9. x=3 (mod 7),x=3 (mod 5),x=4 (mod 12)
10. x=1 (mod 4),x=0 (mod 6)
2. Modulo

1. 42 mod 5
2. 3^302 mod 5
3. 19^24 mod 21
4. 7^106 mod 143
5. 27^400 mod 619
6. 42^-1 mod 5

3. Extended Euclidean Algorithm, Euclid's Algorithm, Modular multiplicative inverse

1. 11 and 12
2. 7 and 11
3. 3 and 7


Example
1. Chinese Remainder Theorem to solve x=2 (mod 5),x=3 (mod 7),x=10 (mod 11)

Solution:
x-=2\ ("mod "5)->(1)

x-=3\ ("mod "7)->(2)

x-=10\ ("mod "11)->(3)

a_1=2,a_2=3,a_3=10

n_1=5,n_2=7,n_3=11

Check if each n_i is pairwise coprime

GCD(5,7)=1

GCD(5,11)=1


GCD(7,11)=1


since all gcd is 1, so each n_i is pairwise coprime

There is a unique solution modulo N
N=n_1*n_2*n_3=5*7*11=385

Step-1: z_i = N / n_i

z_1 = N / n_1=385/5=77

z_2 = N / n_2=385/7=55

z_3 = N / n_3=385/11=35

Step-2: find y_i-=z_i^(-1)\ ("mod " n_i) using Extended Euclidean Algorithm

y_1-=z_1^(-1)\ ("mod "n_1)-=77^(-1)\ ("mod "5)-=2^(-1)\ ("mod "5)-=-2\ ("mod "5)

t=-2


iQuotient
q=r_1-:r_2
Remainder
r=r_1-q*r_2
 
s=s_1-q*s_2
t=t_1-q*t_2
1510
27701
35-:77=05-0xx77=51-0xx0=10-0xx1=0
477-:5=1577-15xx5=20-15xx1=-151-15xx0=1
55-:2=25-2xx2=11-2xx-15=310-2xx1=-2
62-:1=22-2xx1=0-15-2xx31=-771-2xx-2=5


we get answer by taking the last non-zero row for Remainder r, t=-2


y_2-=z_2^(-1)\ ("mod "n_2)-=55^(-1)\ ("mod "7)-=6^(-1)\ ("mod "7)-=-1\ ("mod "7)

t=-1


iQuotient
q=r_1-:r_2
Remainder
r=r_1-q*r_2
 
s=s_1-q*s_2
t=t_1-q*t_2
1710
25501
37-:55=07-0xx55=71-0xx0=10-0xx1=0
455-:7=755-7xx7=60-7xx1=-71-7xx0=1
57-:6=17-1xx6=11-1xx-7=80-1xx1=-1
66-:1=66-6xx1=0-7-6xx8=-551-6xx-1=7


we get answer by taking the last non-zero row for Remainder r, t=-1


y_3-=z_3^(-1)\ ("mod "n_3)-=35^(-1)\ ("mod "11)-=2^(-1)\ ("mod "11)-=-5\ ("mod "11)

t=-5


iQuotient
q=r_1-:r_2
Remainder
r=r_1-q*r_2
 
s=s_1-q*s_2
t=t_1-q*t_2
11110
23501
311-:35=011-0xx35=111-0xx0=10-0xx1=0
435-:11=335-3xx11=20-3xx1=-31-3xx0=1
511-:2=511-5xx2=11-5xx-3=160-5xx1=-5
62-:1=22-2xx1=0-3-2xx16=-351-2xx-5=11


we get answer by taking the last non-zero row for Remainder r, t=-5


Step-3: The solution, which is unique modulo 385, is
x-=a_1*y_1*z_1+a_2*y_2*z_2+a_3*y_3*z_3\ ("mod "385)

:.x-=2*-2*77+3*-1*55+10*-5*35\ ("mod "385)

:.x-=-308-165-1750\ ("mod "385)

:.x-=-2223\ ("mod "385)

:.x-=87\ ("mod "385)



Method-2: Successive substitution method
x-=2\ ("mod "5)->(1)

x-=3\ ("mod "7)->(2)

x-=10\ ("mod "11)->(3)

from (1)
x-=2\ ("mod "5)

Hence x=2+5a

Now from (2), x-=3\ ("mod "7)

:. (2+5a)-=3\ ("mod "7)

:. 5a-=1\ ("mod "7)

Here 5^(-1)-=3\ ("mod "7)

:. 3xx5a-=3xx1\ ("mod "7)

:. 15a-=3\ ("mod "7)

:. a-=3\ ("mod "7)

Hence a=3+7b

But x=2+5a

:.x=2+5(3+7b)

:.x=2+15+35b

:.x=17+35b

Now from (3), x-=10\ ("mod "11)

:. (17+35b)-=10\ ("mod "11)

:. 6+2b-=10\ ("mod "11)

:. 2b-=4\ ("mod "11)

Here 2^(-1)-=6\ ("mod "11)

:. 6xx2b-=6xx4\ ("mod "11)

:. 12b-=24\ ("mod "11)

:. b-=2\ ("mod "11)

Hence b=2+11c

But x=17+35b

:.x=17+35(2+11c)

:.x=17+70+385c

:.x=87+385c

:.x-=87\ ("mod "385)




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.