|
|
Home > Geometry calculators > Coordinate Geometry > Find the ratio in which the point P (3/4, 5/12) divides the line segment joining the points A(1/2, 3/2) and B(2, -5) calculator
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Find the ratio in which the point P (3/4, 5/12) divides the line segment joining the points A(1/2, 3/2) and B(2, -5) calculator
|
1. Find the ratio in which the point `P(3/4,5/12)` divides the line segment joining the points `A(1/2,3/2)` and `B(2,-5)`
2. Find the ratio in which the point `P(-1,6)` divides the line segment joining the points `A(3,10)` and `B(6,-8)`
3. Find the ratio in which the point `P(-2,3)` divides the line segment joining the points `A(-3,5)` and `B(4,-9)`
4. Find the ratio in which the point `P(3,10)` divides the line segment joining the points `A(5,12)` and `B(2,9)`
5. Find the ratio in which the point `P(6,17)` divides the line segment joining the points `A(1,-3)` and `B(3,5)`
6. Find the ratio in which the point `P(12,23)` divides the line segment joining the points `A(2,8)` and `B(6,14)`
|
Example1. Find the ratio in which the point `P(3/4,5/12)` divides the line segment joining the points `A(1/2,3/2)` and `B(2,-5)`Solution:Method-1 : considering the ratio `m:n`Suppose `P(3/4,5/12)` divides the line joining `A(1/2,3/2)` and `B(2,-5)` in the ratio `m:n` Using section formula `P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))` `:.P(3/4,5/12)=((m(2)+n(1/2))/(m+n),(m(-5)+n(3/2))/(m+n))` `:.(m(2)+n(1/2))/(m+n)=3/4` and `(m(-5)+n(3/2))/(m+n)=5/12` Now, solving first `:. (m(2)+n(1/2))/(m+n)=3/4` `:. 4(2m+(n)/(2))=3(m+n)` `:. 8m+2n=3m+3n` `:. 8m-3m=3n-2n` `:. 5m=n` `:. m/n=(1)/(5)` `:.` The point `P(3/4,5/12)` divides the line joining `A(1/2,3/2)` and `B(2,-5)` in the ratio `1:5` Method-2 : considering the ratio `k:1`Suppose `P(3/4,5/12)` divides the line joining `A(1/2,3/2)` and `B(2,-5)` in the ratio `k:1` Using section formula `P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))` `:.P(3/4,5/12)=((k(2)+(1/2))/(k+1),(k(-5)+(3/2))/(k+1))` `:.(k(2)+(1/2))/(k+1)=3/4` and `(k(-5)+(3/2))/(k+1)=5/12` Now, solving first `:. (k(2)+(1/2))/(k+1)=3/4` `:. 4(2k+1/2)=3(k+1)` `:. 8k+2=3k+3` `:. 8k-3k=3-2` `:. 5k=1` `:. k=(1)/(5)` `:.` The point `P(3/4,5/12)` divides the line joining `A(1/2,3/2)` and `B(2,-5)` in the ratio `1:5`
2. Find the ratio in which the point `P(-1,6)` divides the line segment joining the points `A(3,10)` and `B(6,-8)`Solution:Method-1 : considering the ratio `m:n`Suppose `P(-1,6)` divides the line joining `A(3,10)` and `B(6,-8)` in the ratio `m:n` Using section formula `P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))` `:.P(-1,6)=((m(6)+n(3))/(m+n),(m(-8)+n(10))/(m+n))` `:.(m(6)+n(3))/(m+n)=-1` and `(m(-8)+n(10))/(m+n)=6` Now, solving first `:. (m(6)+n(3))/(m+n)=-1` `:. 6m+3n=-1(m+n)` `:. 6m+3n=-m-n` `:. 6m+m=-n-3n` `:. 7m=-4n` `:. m/n=(-4)/(7)` As the ratio is negative, the point `P(-1,6)` divides the line joining `A(3,10)` and `B(6,-8)` externally in the ratio `4:7` Method-2 : considering the ratio `k:1`Suppose `P(-1,6)` divides the line joining `A(3,10)` and `B(6,-8)` in the ratio `k:1` Using section formula `P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))` `:.P(-1,6)=((k(6)+(3))/(k+1),(k(-8)+(10))/(k+1))` `:.(k(6)+(3))/(k+1)=-1` and `(k(-8)+(10))/(k+1)=6` Now, solving first `:. (k(6)+(3))/(k+1)=-1` `:. 6k+3=-1(k+1)` `:. 6k+3=-k-1` `:. 6k+k=-1-3` `:. 7k=-4` `:. k=(-4)/(7)` As the ratio is negative, the point `P(-1,6)` divides the line joining `A(3,10)` and `B(6,-8)` externally in the ratio `4:7`
3. Find the ratio in which the point `P(-2,3)` divides the line segment joining the points `A(-3,5)` and `B(4,-9)`Solution:Method-1 : considering the ratio `m:n`Suppose `P(-2,3)` divides the line joining `A(-3,5)` and `B(4,-9)` in the ratio `m:n` Using section formula `P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))` `:.P(-2,3)=((m(4)+n(-3))/(m+n),(m(-9)+n(5))/(m+n))` `:.(m(4)+n(-3))/(m+n)=-2` and `(m(-9)+n(5))/(m+n)=3` Now, solving first `:. (m(4)+n(-3))/(m+n)=-2` `:. 4m-3n=-2(m+n)` `:. 4m-3n=-2m-2n` `:. 4m+2m=-2n+3n` `:. 6m=n` `:. m/n=(1)/(6)` `:.` The point `P(-2,3)` divides the line joining `A(-3,5)` and `B(4,-9)` in the ratio `1:6` Method-2 : considering the ratio `k:1`Suppose `P(-2,3)` divides the line joining `A(-3,5)` and `B(4,-9)` in the ratio `k:1` Using section formula `P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))` `:.P(-2,3)=((k(4)+(-3))/(k+1),(k(-9)+(5))/(k+1))` `:.(k(4)+(-3))/(k+1)=-2` and `(k(-9)+(5))/(k+1)=3` Now, solving first `:. (k(4)+(-3))/(k+1)=-2` `:. 4k-3=-2(k+1)` `:. 4k-3=-2k-2` `:. 4k+2k=-2+3` `:. 6k=1` `:. k=(1)/(6)` `:.` The point `P(-2,3)` divides the line joining `A(-3,5)` and `B(4,-9)` in the ratio `1:6`
4. Find the ratio in which the point `P(3,10)` divides the line segment joining the points `A(5,12)` and `B(2,9)`Solution:Method-1 : considering the ratio `m:n`Suppose `P(3,10)` divides the line joining `A(5,12)` and `B(2,9)` in the ratio `m:n` Using section formula `P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))` `:.P(3,10)=((m(2)+n(5))/(m+n),(m(9)+n(12))/(m+n))` `:.(m(2)+n(5))/(m+n)=3` and `(m(9)+n(12))/(m+n)=10` Now, solving first `:. (m(2)+n(5))/(m+n)=3` `:. 2m+5n=3(m+n)` `:. 2m+5n=3m+3n` `:. 2m-3m=3n-5n` `:. -m=-2n` `:. m=2n` `:. m/n=(2)/(1)` `:.` The point `P(3,10)` divides the line joining `A(5,12)` and `B(2,9)` in the ratio `2:1` Method-2 : considering the ratio `k:1`Suppose `P(3,10)` divides the line joining `A(5,12)` and `B(2,9)` in the ratio `k:1` Using section formula `P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))` `:.P(3,10)=((k(2)+(5))/(k+1),(k(9)+(12))/(k+1))` `:.(k(2)+(5))/(k+1)=3` and `(k(9)+(12))/(k+1)=10` Now, solving first `:. (k(2)+(5))/(k+1)=3` `:. 2k+5=3(k+1)` `:. 2k+5=3k+3` `:. 2k-3k=3-5` `:. -k=-2` `:. k=2` `:. k=(2)/(1)` `:.` The point `P(3,10)` divides the line joining `A(5,12)` and `B(2,9)` in the ratio `2:1`
5. Find the ratio in which the point `P(6,17)` divides the line segment joining the points `A(1,-3)` and `B(3,5)`Solution:Method-1 : considering the ratio `m:n`Suppose `P(6,17)` divides the line joining `A(1,-3)` and `B(3,5)` in the ratio `m:n` Using section formula `P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))` `:.P(6,17)=((m(3)+n(1))/(m+n),(m(5)+n(-3))/(m+n))` `:.(m(3)+n(1))/(m+n)=6` and `(m(5)+n(-3))/(m+n)=17` Now, solving first `:. (m(3)+n(1))/(m+n)=6` `:. 3m+n=6(m+n)` `:. 3m+n=6m+6n` `:. 3m-6m=6n-n` `:. -3m=5n` `:. 3m=-5n` `:. m/n=(-5)/(3)` As the ratio is negative, the point `P(6,17)` divides the line joining `A(1,-3)` and `B(3,5)` externally in the ratio `5:3` Method-2 : considering the ratio `k:1`Suppose `P(6,17)` divides the line joining `A(1,-3)` and `B(3,5)` in the ratio `k:1` Using section formula `P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))` `:.P(6,17)=((k(3)+(1))/(k+1),(k(5)+(-3))/(k+1))` `:.(k(3)+(1))/(k+1)=6` and `(k(5)+(-3))/(k+1)=17` Now, solving first `:. (k(3)+(1))/(k+1)=6` `:. 3k+1=6(k+1)` `:. 3k+1=6k+6` `:. 3k-6k=6-1` `:. -3k=5` `:. 3k=-5` `:. k=(-5)/(3)` As the ratio is negative, the point `P(6,17)` divides the line joining `A(1,-3)` and `B(3,5)` externally in the ratio `5:3`
6. Find the ratio in which the point `P(12,23)` divides the line segment joining the points `A(2,8)` and `B(6,14)`Solution:Method-1 : considering the ratio `m:n`Suppose `P(12,23)` divides the line joining `A(2,8)` and `B(6,14)` in the ratio `m:n` Using section formula `P(x,y)=((mx_2+nx_1)/(m+n),(my_2+ny_1)/(m+n))` `:.P(12,23)=((m(6)+n(2))/(m+n),(m(14)+n(8))/(m+n))` `:.(m(6)+n(2))/(m+n)=12` and `(m(14)+n(8))/(m+n)=23` Now, solving first `:. (m(6)+n(2))/(m+n)=12` `:. 6m+2n=12(m+n)` `:. 6m+2n=12m+12n` `:. 6m-12m=12n-2n` `:. -6m=10n` `:. 6m=-10n` `:. m/n=(-10)/(6)` `:. m/n=(-5)/(3)` As the ratio is negative, the point `P(12,23)` divides the line joining `A(2,8)` and `B(6,14)` externally in the ratio `5:3` Method-2 : considering the ratio `k:1`Suppose `P(12,23)` divides the line joining `A(2,8)` and `B(6,14)` in the ratio `k:1` Using section formula `P(x,y)=((kx_2+x_1)/(k+1),(ky_2+y_1)/(k+1))` `:.P(12,23)=((k(6)+(2))/(k+1),(k(14)+(8))/(k+1))` `:.(k(6)+(2))/(k+1)=12` and `(k(14)+(8))/(k+1)=23` Now, solving first `:. (k(6)+(2))/(k+1)=12` `:. 6k+2=12(k+1)` `:. 6k+2=12k+12` `:. 6k-12k=12-2` `:. -6k=10` `:. 6k=-10` `:. k=(-10)/(6)` `:. k=(-5)/(3)` As the ratio is negative, the point `P(12,23)` divides the line joining `A(2,8)` and `B(6,14)` externally in the ratio `5:3`
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|