Home > Calculus calculators > Powers of complex numbers calculator

Definition and examples
Complex Number Operation
Powers of complex numbers
Powers of complex numbers
Complex A : Complex B : Complex C :
, ,
Find :
Mode =
Decimal Place =
SolutionHelp
Powers of complex numbers calculator
1. (5+6i),(-2+3i),(1-3i)
2. (3-2i),(4+3i),(2-5i)


Example
1. A=5+6i,B=-2+3i,C=1-3i
Find pow(A,6)


Solution:
Here A=5+6i,B=-2+3i,C=1-3i


For a complex number z=a+bi, the polar form is z=r(cos(θ)+isin(θ))

then power of n of given complex number can be obtained by
zn=[r(cos(θ)+isin(θ))]n=rn[cos(nθ)+isin(nθ)]


Step-1: Convert to exponential form: z=reiθ

Here, a=5 and b=6

:. r=sqrt(5^2+6^2)=sqrt(25+36)=sqrt(61)=7.8102

theta=atan(b/a) (Since a>0)

:. theta=atan((6)/(5))

:. theta=atan(1.2)

:. theta=50.1944 ^circ or theta=0.8761 rad

:. theta=0.8761

Exponential form:
5+6i=r*e^(i*theta)

5+6i=7.8102*e^(i(0.8761))

Step-2: Apply the power formula
Now (5+6i)^(6)=(7.8102)^(6)*e^(i(6*0.8761))

=226981*e^(i(5.2563))

Step-3: Convert back to rectangular form
=226981*(cos(5.2563)+isin(5.2563))

=226981*(0.5175-0.8557i)

=117469-194220i




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.