1. `A=-1-i,B=-2+3i,C=1-3i`
Find roots(4,A)Solution:Here `A=-1-i,B=-2+3i,C=1-3i`
For a complex number `z=a+bi`, the polar form is `z=r*(cos(theta)+i*sin(theta))`
then all `n^(th)` roots of given complex number can be obtained by the De Moivre's Formula i.e.
`w_k=[r*(cos(theta)+i*sin(theta))]^(1/n)=root (n)(r)*[cos((theta+2kpi)/n)+i*sin((theta+2kpi)/n)]`, where `k=0,1,2..,n-1`
Here `n=4`
Step-1: Convert to polar form: `z=r*(cos(theta)+i*sin(theta))`Here, `a=-1` and `b=-1`
`:. r=sqrt((-1)^2+(-1)^2)=sqrt(1+1)=sqrt(2)=1.4142`
`theta=atan(b/a)+180` (Since `a<0`)
`:. theta=atan((-1)/(-1))+180`
`:. theta=atan(1)+180`
`:. theta=45+180`
`:. theta=225 ^circ` or `theta=(5pi)/(4)` rad = 3.927 rad
`:. theta=3.927`
The polar form is `r*(cos(theta)+i*sin(theta))`
`=1.4142*(cos(3.927)+i*sin(3.927))`
Step-2: All `n^(th)` roots of given complex number `r*(cos(theta)+i*sin(theta))` is
`w_k=root (n)(r)*[cos((theta+2kpi)/n)+i*sin((theta+2kpi)/n)]`, `k=0,..,n-1`Hence the 4 roots are
for `k=0``w_0=1.0905*[cos((3.927+2*0*pi)/4)+i*sin((3.927+2*0*pi)/4)]`
`w_0=1.0905*[cos(0.9817)+i*sin(0.9817)]`
`w_0=0.6059+0.9067i`
for `k=1``w_1=1.0905*[cos((3.927+2*1*pi)/4)+i*sin((3.927+2*1*pi)/4)]`
`w_1=1.0905*[cos(2.5525)+i*sin(2.5525)]`
`w_1=-0.9067+0.6059i`
for `k=2``w_2=1.0905*[cos((3.927+2*2*pi)/4)+i*sin((3.927+2*2*pi)/4)]`
`w_2=1.0905*[cos(4.1233)+i*sin(4.1233)]`
`w_2=-0.6059-0.9067i`
for `k=3``w_3=1.0905*[cos((3.927+2*3*pi)/4)+i*sin((3.927+2*3*pi)/4)]`
`w_3=1.0905*[cos(5.6941)+i*sin(5.6941)]`
`w_3=0.9067-0.6059i`