`f(x)=x^3+6x^2-15x+7`
Find Local maxima and minima of a function using first derivative testSolution:Here, `f(x)=x^3+6x^2-15x+7`
Step-1: Find the derivative of the function`:. f^'(x)=``d/(dx)(x^3+6x^2-15x+7)`
`=d/(dx)(x^3)+d/(dx)(6x^2)-d/(dx)(15x)+d/(dx)(7)`
`=3x^2+12x-15+0`
`=3x^2+12x-15`
Step-2: Find the critical points of the derivative functionTo find critical points, set `f^'(x)=0` and then solve for x
`f^'(x)=0`
`=>3x^2+12x-15 = 0`
`=>3(x^2+4x-5) = 0`
`=>3(x^2-x+5x-5) = 0`
`=>3(x(x-1)+5(x-1)) = 0`
`=>3(x-1)(x+5) = 0`
`=>(x-1) = 0" or "(x+5) = 0`
`=>x = 1" or "x = -5`
The solution is
`x = 1,x = -5`
`:.` `x=-5` and `x=1`
Step-3: Use the critical points to determine intervalsThere are total 2 critical points, So we have 3 intervals
`(-oo,-5),(-5,1),(1,oo)`
Step-4: Determine the Sign of `f^'(x)` in each interval1. For first interval `(-oo,-5)`, we choose `x=-6``f^'(-6)``=3*(-6)^2+12*(-6)-15`
`=108-72-15`
`=21`` > 0`
2. For second interval `(-5,1)`, we choose `x=0``f^'(0)``=3*0^2+12*0-15`
`=0+0-15`
`=-15`` < 0`
3. For third interval `(1,oo)`, we choose `x=2``f^'(2)``=3*2^2+12*2-15`
`=12+24-15`
`=21`` > 0`
| Interval | x-value | `f^'(x)` | Negative or Positive |
| `(-oo,-5)` | `-6` | `f^'(-6)=21`` > 0` | Positive |
| `(-5,1)` | `0` | `f^'(0)=-15`` < 0` | Negative |
| `(1,oo)` | `2` | `f^'(2)=21`` > 0` | Positive |
Step-5: Conclude the nature of each critical pointAt `x=-5`, `f^'(x)` changes from positive to negative, indicating a local maximum
At `x=1`, `f^'(x)` changes from positive to negative, indicating a local minimum
Step-6: Determine the function values at the critical pointsCalculate `f(x)` at the critical points to find the maximum and minimum values
1. At `x=-5``f(-5)``=(-5)^3+6*(-5)^2-15*(-5)+7`
`=-125+150+75+7`
`=107`
Local Maximum point = `(-5,107)`2. At `x=1``f(1)``=1^3+6*1^2-15*1+7`
`=1+6-15+7`
`=-1`
Local Minimum point = `(1,-1)`graph
