`f(x)=0.2x^5+1.25x^4+2x^3+2`
Find Increasing and decreasing intervals of a functionSolution:Here, `f(x)=0.2x^5+1.25x^4+2x^3+2`
Step-1: Find the derivative of the function`:. f^'(x)=``d/(dx)(0.2x^5+1.25x^4+2x^3+2)`
`=d/(dx)(0.2x^5)+d/(dx)(1.25x^4)+d/(dx)(2x^3)+d/(dx)(2)`
`=x^4+5x^3+6x^2+0`
`=x^4+5x^3+6x^2`
Step-2: Find the critical points of the derivative functionTo find critical points, set `f^'(x)=0` and then solve for x
`f^'(x)=0`
`=>x^4+5x^3+6x^2 = 0`
`=>x^2(x^2+5x+6) = 0`
`=>x^2(x^2+2x+3x+6) = 0`
`=>x^2(x(x+2)+3(x+2)) = 0`
`=>x^2(x+2)(x+3) = 0`
`=>x^2 = 0" or "(x+2) = 0" or "(x+3) = 0`
`=>x^2 = 0" or "x = -2" or "x = -3`
`=>x = 0" or "x = -2" or "x = -3`
The solution is
`x = 0,x = -2,x = -3`
`:.` `x=-3`, `x=-2` and `x=0`
Step-3: Use the critical points to determine intervalsThere are total 3 critical points, So we have 4 intervals
`(-oo,-3),(-3,-2),(-2,0),(0,oo)`
Step-4: Determine if the function is increasing or decreasing in each interval1. For first interval `(-oo,-3)`, we choose `x=-4``f^'(-4)``=(-4)^4+5*(-4)^3+6*(-4)^2`
`=256-320+96`
`=32`` > 0`
`:.` Function is increasing on `(-oo,-3)`
2. For second interval `(-3,-2)`, we choose `x=-2.5``f^'(-2.5)``=(-2.5)^4+5*(-2.5)^3+6*(-2.5)^2`
`=39.0625-78.125+37.5`
`=-1.5625`` < 0`
`:.` Function is decreasing on `(-3,-2)`
3. For third interval `(-2,0)`, we choose `x=-1``f^'(-1)``=(-1)^4+5*(-1)^3+6*(-1)^2`
`=1-5+6`
`=2`` > 0`
`:.` Function is increasing on `(-2,0)`
4. For fourth interval `(0,oo)`, we choose `x=1``f^'(1)``=1^4+5*1^3+6*1^2`
`=1+5+6`
`=12`` > 0`
`:.` Function is increasing on `(0,oo)`
| Interval | x-value | `f^'(x)` | increasing or decreasing |
| `(-oo,-3)` | `-4` | `f^'(-4)=32`` > 0` | f is increasing |
| `(-3,-2)` | `-2.5` | `f^'(-2.5)=-1.5625`` < 0` | f is decreasing |
| `(-2,0)` | `-1` | `f^'(-1)=2`` > 0` | f is increasing |
| `(0,oo)` | `1` | `f^'(1)=12`` > 0` | f is increasing |
So, function f(x) is increasing on `(-oo,-3),(-2,0),(0,oo)` and decreasing on `(-3,-2)`