`f(x)=x^3+6x^2-15x+7`
Find Local maxima and minimaSolution:Here, `f(x)=x^3+6x^2-15x+7`
Step-1: Find the derivative of the function`:. f^'(x)=``d/(dx)(x^3+6x^2-15x+7)`
`=d/(dx)(x^3)+d/(dx)(6x^2)-d/(dx)(15x)+d/(dx)(7)`
`=3x^2+12x-15+0`
`=3x^2+12x-15`
Step-2: Find the critical points of the derivative functionTo find critical points, set `f'(x)=0` and then solve for x
`f^'(x)=0`
`=>3x^2+12x-15 = 0`
`=>3(x^2+4x-5) = 0`
`=>3(x^2-x+5x-5) = 0`
`=>3(x(x-1)+5(x-1)) = 0`
`=>3(x-1)(x+5) = 0`
`=>(x-1) = 0" or "(x+5) = 0`
`=>x = 1" or "x = -5`
The solution is
`x = 1,x = -5`
`:.` The critical points are `x=1` and `x=-5`
Step-3: Apply the second derivative testNow, `f^('')(x)=``d/(dx)(3x^2+12x-15)`
`=d/(dx)(3x^2)+d/(dx)(12x)-d/(dx)(15)`
`=6x+12-0`
`=6x+12`
Evaluate `f^('')(x)` at the critical pointsFor `x=1`
`f^('')(1)``=6*1+12`
`=6+12`
`=18`` > 0`
`:.` At `x=1` the function is local minimum
For `x=-5`
`f^('')(-5)``=6*(-5)+12`
`=-30+12`
`=-18`` < 0`
`:.` At `x=-5` the function is local maximum
Step-4: Calculate the extrema valuesSubstitute the `x` values back into the original function `f(x)`
`f(x)=x^3+6x^2-15x+7`
1. At `x=1``f(1)``=1^3+6*1^2-15*1+7`
`=1+6-15+7`
`=-1`
local minimum point = `(1,-1)`2. At `x=-5``f(-5)``=(-5)^3+6*(-5)^2-15*(-5)+7`
`=-125+150+75+7`
`=107`
local maximum point = `(-5,107)`graph