Example1. `y=x^2+3x-4`, find Parity of a function
Solution: `y=x^2+3x-4`
Parity : Even Function : A function is even if `f(-x)=f(x)` for all `x in R`
Odd Function : A function is odd if `f(-x)=-f(x)` for all `x in R`
`f(-x)=(-x)^2+3(-x)-4`
`f(-x)=x^2-3x-4`
`f(x)!=f(-x)`
`x^2+3x-4` is not an even function
`-f(x)=-(x^2+3x-4)`
`-f(x)=-x^2-3x+4`
`f(x)!=-f(x)`
`x^2+3x-4` is not an odd function
`:. x^2+3x-4` is neither even nor odd function
|