Example1. Find Side a using Side b=3, Angle A=60, Angle B=45 (Law of Sines)
Solution: The law of sines states that asin(A)=bsin(B)=csin(C)
We have b=3,A=60,B=45
∴asin(A)=bsin(B)
∴a=b⋅sin(A)sin(B)
∴a=3⋅sin(60)sin(45)
∴a=3⋅0.8660.7071
∴a=3.6742
A+B+C=180
∴C=180-(A+B)
∴C=180-(60+45)
∴C=180-105
∴C=75
csin(C)=bsin(B)
∴c=b⋅sin(C)sin(B)
∴c=3⋅sin(75)sin(45)
∴c=3⋅0.96590.7071
∴c=4.0981
perimeter P=a+b+c=3.6742+3+4.0981=10.7723
Area =12ab⋅sin(C)=12⋅3.6742⋅3⋅sin(75)=12⋅3.6742⋅3⋅0.9659=5.3236
|