Method and examples
Method
Determine whether the system of linear equations has Infinite solution
Enter Equations line by line
Find system has
Mode =
Decimal Place =
SolutionHelp
Determine whether the system of linear equations has Infinite solution calculator

1. 2x+5y=16,3x+y=11
2. 2x+5y=16,4x+10y=32
3. 2x+2y+z=5,x-y+z=1,3x+y+2z=4
4. 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8


Example
1. Determine whether the system of linear equations x+y+z=3,2x-y-z=3,x-y+z=9 has No solution

Solution:
Here x+y+z=3
2x-y-z=3
x-y+z=9

|D| = 
 1  1  1 
 2  -1  -1 
 1  -1  1 


 =
 1 × 
 -1  -1 
 -1  1 
 -1 × 
 2  -1 
 1  1 
 +1 × 
 2  -1 
 1  -1 


=1×(-1×1-(-1)×(-1))-1×(2×1-(-1)×1)+1×(2×(-1)-(-1)×1)

=1×(-1-1)-1×(2+1)+1×(-2+1)

=1×(-2)-1×(3)+1×(-1)

=-2-3-1

=-6


|D1| = 
 3  1  1 
 3  -1  -1 
 9  -1  1 


 =
 3 × 
 -1  -1 
 -1  1 
 -1 × 
 3  -1 
 9  1 
 +1 × 
 3  -1 
 9  -1 


=3×(-1×1-(-1)×(-1))-1×(3×1-(-1)×9)+1×(3×(-1)-(-1)×9)

=3×(-1-1)-1×(3+9)+1×(-3+9)

=3×(-2)-1×(12)+1×(6)

=-6-12+6

=-12


|D2| = 
 1  3  1 
 2  3  -1 
 1  9  1 


 =
 1 × 
 3  -1 
 9  1 
 -3 × 
 2  -1 
 1  1 
 +1 × 
 2  3 
 1  9 


=1×(3×1-(-1)×9)-3×(2×1-(-1)×1)+1×(2×9-3×1)

=1×(3+9)-3×(2+1)+1×(18-3)

=1×(12)-3×(3)+1×(15)

=12-9+15

=18


|D3| = 
 1  1  3 
 2  -1  3 
 1  -1  9 


 =
 1 × 
 -1  3 
 -1  9 
 -1 × 
 2  3 
 1  9 
 +3 × 
 2  -1 
 1  -1 


=1×(-1×9-3×(-1))-1×(2×9-3×1)+3×(2×(-1)-(-1)×1)

=1×(-9+3)-1×(18-3)+3×(-2+1)

=1×(-6)-1×(15)+3×(-1)

=-6-15-3

=-24


Here D=-6,D1=-12,D2=18,D3=-24

Here, D0

Hence, given system has unique solution (System of equation is consistent)




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.