Method and examples
Method
Determine whether the system of linear equations has Infinite solution
Enter Equations line by line
Find system has
Mode =
Decimal Place =
SolutionHelp
Determine whether the system of linear equations has Infinite solution calculator

1. 2x+5y=16,3x+y=11
2. 2x+5y=16,4x+10y=32
3. 2x+2y+z=5,x-y+z=1,3x+y+2z=4
4. 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8


Example
1. Determine whether the system of linear equations x+y+z=3,2x-y-z=3,x-y+z=9 has No solution

Solution:
Here x+y+z=3
2x-y-z=3
x-y+z=9

|D| = 
 1  1  1 
 2  -1  -1 
 1  -1  1 


 =
 1 × 
 -1  -1 
 -1  1 
 -1 × 
 2  -1 
 1  1 
 +1 × 
 2  -1 
 1  -1 


=1 xx (-1 × 1 - (-1) × (-1)) -1 xx (2 × 1 - (-1) × 1) +1 xx (2 × (-1) - (-1) × 1)

=1 xx (-1 -1) -1 xx (2 +1) +1 xx (-2 +1)

=1 xx (-2) -1 xx (3) +1 xx (-1)

= -2 -3 -1

=-6


|D_1| = 
 3  1  1 
 3  -1  -1 
 9  -1  1 


 =
 3 × 
 -1  -1 
 -1  1 
 -1 × 
 3  -1 
 9  1 
 +1 × 
 3  -1 
 9  -1 


=3 xx (-1 × 1 - (-1) × (-1)) -1 xx (3 × 1 - (-1) × 9) +1 xx (3 × (-1) - (-1) × 9)

=3 xx (-1 -1) -1 xx (3 +9) +1 xx (-3 +9)

=3 xx (-2) -1 xx (12) +1 xx (6)

= -6 -12 +6

=-12


|D_2| = 
 1  3  1 
 2  3  -1 
 1  9  1 


 =
 1 × 
 3  -1 
 9  1 
 -3 × 
 2  -1 
 1  1 
 +1 × 
 2  3 
 1  9 


=1 xx (3 × 1 - (-1) × 9) -3 xx (2 × 1 - (-1) × 1) +1 xx (2 × 9 - 3 × 1)

=1 xx (3 +9) -3 xx (2 +1) +1 xx (18 -3)

=1 xx (12) -3 xx (3) +1 xx (15)

= 12 -9 +15

=18


|D_3| = 
 1  1  3 
 2  -1  3 
 1  -1  9 


 =
 1 × 
 -1  3 
 -1  9 
 -1 × 
 2  3 
 1  9 
 +3 × 
 2  -1 
 1  -1 


=1 xx (-1 × 9 - 3 × (-1)) -1 xx (2 × 9 - 3 × 1) +3 xx (2 × (-1) - (-1) × 1)

=1 xx (-9 +3) -1 xx (18 -3) +3 xx (-2 +1)

=1 xx (-6) -1 xx (15) +3 xx (-1)

= -6 -15 -3

=-24


Here D=-6,D_1=-12,D_2=18,D_3=-24

Here, D!=0

Hence, given system has unique solution (System of equation is consistent)




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.