|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Transforming matrix to Row Echelon Form calculator
|
1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]` 2. `[[6,-2,2],[-2,3,-1],[2,-1,3]]` 3. `[[3,2,4],[2,0,2],[4,2,3]]` 4. `[[1,1,1],[-1,-3,-3],[2,4,4]]` 5. `[[2,3],[4,10]]` 6. `[[5,1],[4,2]]`
|
Example1. Find Transforming matrix to Row Echelon Form ... `[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:Row echelon form Given matrix | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`R_1 larr R_1-:8` = | | `1` | `-3/4` | `1/4` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`R_2 larr R_2+6xx R_1` = | | `1` | `-3/4` | `1/4` | | | `0` | `5/2` | `-5/2` | | | `2` | `-4` | `3` | |
|
`R_3 larr R_3-2xx R_1` = | | `1` | `-3/4` | `1/4` | | | `0` | `5/2` | `-5/2` | | | `0` | `-5/2` | `5/2` | |
|
`R_2 larr R_2xx2/5` = | | `1` | `-3/4` | `1/4` | | | `0` | `1` | `-1` | | | `0` | `-5/2` | `5/2` | |
|
`R_3 larr R_3+5/2xx R_2` = | | `1` | `-3/4` | `1/4` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
|
|
|
|
|