|
|
|
|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
If alpha and beta are roots of quadratic equation, then find alpha^2+beta^2 calculator
|
1. If alpha and beta are roots of equation
1. 3x^2+8x+2=0, find a^2+b^2
2. 3x^2+8x+2=0, find a-b
3. 3x^2+8x+2=0, find a^3+b^3
4. 3x^2+8x+2=0, find a/b^2+b/a^2
5. 3x^2+8x+2=0, find ab^2+ba^2
6. 3x^2+8x+2=0, find a/b+b/a
|
Example1. If alpha and beta are roots of quadratic equation 3x^2+8x+2=0, then find the value of alpha^2+beta^2Solution:3x^2+8x+2=0Comparing the given equation with ax^2+bx+c=0We get a=3,b=8,c=2Sum of roots =alpha+beta=(-b)/a=(-8)/3Product of roots =alpha*beta=c/a=2/3Now we have to find alpha^2+beta^2alpha^2+beta^2=52/9 We know that
alpha^2+beta^2=(alpha+beta)^2-2alphabeta
:.alpha^2+beta^2=((-8)/3)^2-2*2/3
:.alpha^2+beta^2=64/9-4/3
:.alpha^2+beta^2=52/9
:.alpha^2+beta^2=52/9
|
|
|
|
|
|
|
|
Share this solution or page with your friends.
|
|
|
|