|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Ratio and Proportion - If x/(y+z)=y/(z+x)=z/(x+y) then prove the value of each ratio is 1/2 or -1 calculator
|
1. If a:b:c=2:3:5 then find value of (a^2+b^2+c^2)/(ab+bc+ca)
1. If a/b=2/3, then find (2a-3b)/(a-2b)
2. If a:2=b:3=c:5, then find (a^2+b^2+c^2)/(ab+bc+ca)
3. If a/4=b/15, then find (a+b)/(a-b)
4. If (2a+3b)/(a+b)=13/5, then find a/b
5. If (x^2+1)/(x^2-1)=2, then find x
6. If x:30=12:20, then find x
2. If a:b=2:3,b:c=4:5 then find a:b:c
1. If a:b=2:3,b:c=4:5, then find a:b:c
2. If b:c=4:5,c:d=5:6, then find b:c:d
3. If a:b=2:3,b:c=4:5,c:d=5:6, then find a:b:c:d
4. If 2a=3b, then find a:b
5. If 2a=3b=7c, then find a:b:c
3. If a/b=c/d=e/f then prove that (2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f)
1. If a/b=c/d=e/f, then prove that (2a+3c-4e)/(2b+3d-4f)=(5a-4c+3e)/(5b-4d+3f)
2. If x/(b^2-c^2)=y/(c^2-a^2)=z/(a^2-b^2), then prove that x+y+z=0
4. If x/(y+z)=y/(z+x)=z/(x+y) then prove the value of each ratio is 1/2 or -1
1. If x/(y+z)=y/(z+x)=z/(x+y), then prove each ratio = 1/2,-1
2. If (5a+6b)/(7c)=(6b+7c)/(5a)=(7c+5a)/(6b), then prove each ratio = 2,-1
3. If (ax+by)/(x+y)=(ay+bz)/(y+z)=(az+bx)/(z+x), then prove each ratio = (a+b)/2
5. Geometric Mean
1. Geometric Mean of 49/4 and 16/9
2. Geometric Mean of 8a^2 and 32b^2
3. Geometric Mean of (a-b)^2 and (a+b)^2
4. If geometric mean 6x^2 and x is 9x, find value of x
6. Ratios(duplicate, triplicate) and proportional(mean, third, fourth)
1. Duplicate ratio of 2:3
2. Triplicate ratio of 2:3
3. Sub-Duplicate ratio of 16:25
4. Sub-Triplicate ratio of 8:27
5. Compounded ratio of 2:5,3:4
6. Compounded ratio of 2:3,3:4,4:5
7. Mean proportional of 8,32
8. Third proportional of 16,36
9. Fourth proportional of 3,7,15
10. Compare ratios of 2:3,3:4,4:5
|
Example1. If x/(y+z)=y/(z+x)=z/(x+y) then prove the value of each ratio is 1/2,-1
Solution: Here x/(y+z)=y/(z+x)=z/(x+y)
Case-1 : If x+y+z!=0, then
Each ratio=(x+y+z)/(y+z+z+x+x+y)
=(x+y+z)/(2y+2z+2x)
=(x+y+z)/(2(y+z+x))
Cancel the common factor (x+y+z)
=(1)/(2)
Case-2 : If x+y+z=0, then
y+z=-x
Then, the first ratio =(x)/(y+z)
=(x)/(-x)
Cancel the common factor -x
=-1
Hence, each ratio =-1.
Thus, the value of each ratio is (1)/(2) or -1.
|
|
|
|
|