|
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Ratio and Proportion - If x/(y+z)=y/(z+x)=z/(x+y) then prove the value of each ratio is 1/2 or -1 calculator
|
1. If a:b:c=2:3:5 then find value of a2+b2+c2ab+bc+ca
1. If ab=23, then find 2a-3ba-2b
2. If a:2=b:3=c:5, then find a2+b2+c2ab+bc+ca
3. If a4=b15, then find a+ba-b
4. If 2a+3ba+b=135, then find ab
5. If x2+1x2-1=2, then find x
6. If x:30=12:20, then find x
2. If a:b=2:3,b:c=4:5 then find a:b:c
1. If a:b=2:3,b:c=4:5, then find a:b:c
2. If b:c=4:5,c:d=5:6, then find b:c:d
3. If a:b=2:3,b:c=4:5,c:d=5:6, then find a:b:c:d
4. If 2a=3b, then find a:b
5. If 2a=3b=7c, then find a:b:c
3. If ab=cd=ef then prove that 2a+3c-4e2b+3d-4f=5a-4c+3e5b-4d+3f
1. If ab=cd=ef, then prove that 2a+3c-4e2b+3d-4f=5a-4c+3e5b-4d+3f
2. If xb2-c2=yc2-a2=za2-b2, then prove that x+y+z=0
4. If xy+z=yz+x=zx+y then prove the value of each ratio is 12 or -1
1. If xy+z=yz+x=zx+y, then prove each ratio = 12,-1
2. If 5a+6b7c=6b+7c5a=7c+5a6b, then prove each ratio = 2,-1
3. If ax+byx+y=ay+bzy+z=az+bxz+x, then prove each ratio = a+b2
5. Geometric Mean
1. Geometric Mean of 494 and 169
2. Geometric Mean of 8a2 and 32b2
3. Geometric Mean of (a-b)2 and (a+b)2
4. If geometric mean 6x2 and x is 9x, find value of x
6. Ratios(duplicate, triplicate) and proportional(mean, third, fourth)
1. Duplicate ratio of 2:3
2. Triplicate ratio of 2:3
3. Sub-Duplicate ratio of 16:25
4. Sub-Triplicate ratio of 8:27
5. Compounded ratio of 2:5,3:4
6. Compounded ratio of 2:3,3:4,4:5
7. Mean proportional of 8,32
8. Third proportional of 16,36
9. Fourth proportional of 3,7,15
10. Compare ratios of 2:3,3:4,4:5
|
Example1. If xy+z=yz+x=zx+y then prove the value of each ratio is 12,-1
Solution: Here xy+z=yz+x=zx+y
Case-1 : If x+y+z≠0, then
Each ratio=x+y+zy+z+z+x+x+y
=x+y+z2y+2z+2x
=x+y+z2(y+z+x)
Cancel the common factor (x+y+z)
=12
Case-2 : If x+y+z=0, then
y+z=-x
Then, the first ratio =xy+z
=x-x
Cancel the common factor -x
=-1
Hence, each ratio =-1.
Thus, the value of each ratio is 12 or -1.
|
|
|
|
|