|
Definition and examples
|
Vector Algebra
|
Vector Operation
|
Vector projections of B onto A calculator |
|
|
|
|
- `(3,4), (4,3)`
- `(1,2), (3,4)`
- `(3,4,0), (2,2,1)`
|
Mode =
|
Decimal Place =
|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Vector projections of B onto A calculator
|
1. `(3,4), (4,3)` 2. `(1,2), (3,4)` 3. `(3,4,0), (2,2,1)`
|
Example1. Find projection(A,B) `A=(3,4,0)`,`B=(2,2,1)`
Solution: Here `vec A=(3,4,0),vec B=(2,2,1)`
`proj_(vec B)vec A=(vec A * vec B)/|vec B|^2 * vec B`
1. Calculate dot product `vec A * vec B`
`=A_1*B_1 + A_2*B_2 + A_3*B_3`
`=3*2 + 4*2 + 0*1`
`=6 + 8 + 0`
`=14`
2. Calculate magnitude `|vec B|`
`=sqrt(B_1^2 + B_2^2 + B_3^2)`
`=sqrt(2^2 + 2^2 + 1^2)`
`=sqrt(4 + 4 + 1)`
`=sqrt(9)`
`=3`
`:.|vec B|^2=9`
The Vector projection is given by `proj_(vec B)vec A=(vec A * vec B)/|vec B|^2 * vec B`
`=(14)/(9) * vec B`
`=(14)/(9) * (2,2,1)`
`=(28/9,28/9,14/9)`
The scalar projection is given by `proj_(vec B)vec A=(vec A * vec B)/|vec B|`
Now, `(vec A * vec B)/(|vec B|)`
`=14/3`
|
|
|
|
|