2. Find Regression line equations from x = 22, y = 21, 6x = 12, 6y = 10, r = -0.33
Solution:
`byx = r * (sigma y)/(sigma x)`
`byx = -0.33 * 10/12`
`byx = -0.275`
Regression Line y on x
`y - bar y = byx (x - bar x)`
`y - 21 = -0.275 (x - 22)`
`y - 21 = -0.275 x + 6.05`
`y = -0.275 x + 6.05 + 21`
`y = -0.275 x + 27.05`
`bxy = r * (sigma x)/(sigma y)`
`bxy = -0.33 * 12/10`
`bxy = -0.396`
Regression Line x on y
`x - bar x = bxy (y - bar y)`
`x - 22 = -0.396 (y - 21)`
`x - 22 = -0.396 y + 8.316`
`x = -0.396 y + 8.316 + 22`
`x = -0.396 y + 30.316`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then