Home > Matrix & Vector calculators > Inverse of matrix using Cayley Hamilton method example

3. Cayley Hamilton method example ( Enter your problem )
  1. Example [311-121111]
  2. Example [231056112]
  3. Example [23410]
  4. Example [5142]
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

1. Example [311-121111]
(Previous example)
3. Example [23410]
(Next example)

2. Example [231056112]





Find Inverse of matrix using Cayley Hamilton method
A=[72-2-6-1262-1]


Solution:
To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A.
|A-tI|

 = 
 (7-t)  2  -2 
 -6  (-1-t)  2 
 6  2  (-1-t) 


=(7-t)((-1-t)×(-1-t)-2×2)-2((-6)×(-1-t)-2×6)+(-2)((-6)×2-(-1-t)×6)

=(7-t)((1+2t+t2)-4)-2((6+6t)-12)-2((-12)-(-6-6t))

=(7-t)(-3+2t+t2)-2(-6+6t)-2(-6+6t)

=(-21+17t+5t2-t3)-(-12+12t)-(-12+12t)

=-t3+5t2-7t+3

p(t)=-t3+5t2-7t+3

The Cayley-Hamilton theorem yields that
O=p(A)=-A3+5A2-7A+3I

Rearranging terms, we have
:. 3I = A^3-5A^2+7A

:. 3I = A(A^2-5A+7I)

:. A^-1 = 1/3(A^2-5A+7I)

Now, first we find A^2-5A+7I

A^2=A×A=
72-2
-6-12
62-1
×
72-2
-6-12
62-1


=
7×7+2×-6-2×67×2+2×-1-2×27×-2+2×2-2×-1
-6×7-1×-6+2×6-6×2-1×-1+2×2-6×-2-1×2+2×-1
6×7+2×-6-1×66×2+2×-1-1×26×-2+2×2-1×-1


=
49-12-1214-2-4-14+4+2
-42+6+12-12+1+412-2-2
42-12-612-2-2-12+4+1


=
258-8
-24-78
248-7


A^2 = 
72-2
-6-12
62-1
2
 = 
258-8
-24-78
248-7


5 × A = 5 × 
72-2
-6-12
62-1
 = 
3510-10
-30-510
3010-5


A^2 - 5 × A = 
258-8
-24-78
248-7
 - 
3510-10
-30-510
3010-5
 = 
25+358+10-8-10
-24-30-7-58+10
24+308+10-7-5
 = 
-10-22
6-2-2
-6-2-2


7 × I = 7 × 
100
010
001
 = 
700
070
007


A^2 - 5 × A + 7 × I = 
-10-22
6-2-2
-6-2-2
 + 
700
070
007
 = 
-10+7-2+02+0
6+0-2+7-2+0
-6+0-2+0-2+7
 = 
-3-22
65-2
-6-25


Now, A^-1 = 1/3(A^2-5A+7I)

:. A^-1 = 1/(3)
-3-22
65-2
-6-25



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example [[3,1,1],[-1,2,1],[1,1,1]]
(Previous example)
3. Example [[2,3],[4,10]]
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.