Home > Matrix & Vector calculators > Inverse of matrix using Cayley Hamilton method example

3. Cayley Hamilton method example ( Enter your problem )
  1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
  2. Example `[[2,3,1],[0,5,6],[1,1,2]]`
  3. Example `[[2,3],[4,10]]`
  4. Example `[[5,1],[4,2]]`
Other related methods
  1. Adjoint method
  2. Gauss-Jordan Elimination method
  3. Cayley Hamilton method

1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
(Previous example)
3. Example `[[2,3],[4,10]]`
(Next example)

2. Example `[[2,3,1],[0,5,6],[1,1,2]]`





Find Inverse of matrix using Cayley Hamilton method
`A=[[7,2,-2],[-6,-1,2],[6,2,-1]]`


Solution:
To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A.
`|A-tI|`

 = 
 `(7-t)`  `2`  `-2` 
 `-6`  `(-1-t)`  `2` 
 `6`  `2`  `(-1-t)` 


`=(7-t)((-1-t) × (-1-t) - 2 × 2)-2((-6) × (-1-t) - 2 × 6)+(-2)((-6) × 2 - (-1-t) × 6)`

`=(7-t)((1+2t+t^2)-4)-2((6+6t)-12)-2((-12)-(-6-6t))`

`=(7-t)(-3+2t+t^2)-2(-6+6t)-2(-6+6t)`

`= (-21+17t+5t^2-t^3)-(-12+12t)-(-12+12t)`

`=-t^3+5t^2-7t+3`

`p(t)=-t^3+5t^2-7t+3`

The Cayley-Hamilton theorem yields that
`O = p(A)=-A^3+5A^2-7A+3I`

Rearranging terms, we have
`:. 3I = A^3-5A^2+7A`

`:. 3I = A(A^2-5A+7I)`

`:. A^-1 = 1/3(A^2-5A+7I)`

Now, first we find `A^2-5A+7I`

`A^2`=`A×A`=
`7``2``-2`
`-6``-1``2`
`6``2``-1`
×
`7``2``-2`
`-6``-1``2`
`6``2``-1`


=
`7×7+2×-6-2×6``7×2+2×-1-2×2``7×-2+2×2-2×-1`
`-6×7-1×-6+2×6``-6×2-1×-1+2×2``-6×-2-1×2+2×-1`
`6×7+2×-6-1×6``6×2+2×-1-1×2``6×-2+2×2-1×-1`


=
`49-12-12``14-2-4``-14+4+2`
`-42+6+12``-12+1+4``12-2-2`
`42-12-6``12-2-2``-12+4+1`


=
`25``8``-8`
`-24``-7``8`
`24``8``-7`


`A^2` = 
`7``2``-2`
`-6``-1``2`
`6``2``-1`
2
 = 
`25``8``-8`
`-24``-7``8`
`24``8``-7`


`5 × A` = `5` × 
`7``2``-2`
`-6``-1``2`
`6``2``-1`
 = 
`35``10``-10`
`-30``-5``10`
`30``10``-5`


`A^2 - 5 × A` = 
`25``8``-8`
`-24``-7``8`
`24``8``-7`
 - 
`35``10``-10`
`-30``-5``10`
`30``10``-5`
 = 
`25+35``8+10``-8-10`
`-24-30``-7-5``8+10`
`24+30``8+10``-7-5`
 = 
`-10``-2``2`
`6``-2``-2`
`-6``-2``-2`


`7 × I` = `7` × 
`1``0``0`
`0``1``0`
`0``0``1`
 = 
`7``0``0`
`0``7``0`
`0``0``7`


`A^2 - 5 × A + 7 × I` = 
`-10``-2``2`
`6``-2``-2`
`-6``-2``-2`
 + 
`7``0``0`
`0``7``0`
`0``0``7`
 = 
`-10+7``-2+0``2+0`
`6+0``-2+7``-2+0`
`-6+0``-2+0``-2+7`
 = 
`-3``-2``2`
`6``5``-2`
`-6``-2``5`


Now, `A^-1 = 1/3(A^2-5A+7I)`

`:. A^-1 = ``1/(3)`
`-3``-2``2`
`6``5``-2`
`-6``-2``5`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example `[[3,1,1],[-1,2,1],[1,1,1]]`
(Previous example)
3. Example `[[2,3],[4,10]]`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.