Find Inverse of matrix using Cayley Hamilton method
A=[72-2-6-1262-1]Solution:To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial p(t) of the matrix A.
|A-tI| = | | (7-t) | 2 | -2 | | | -6 | (-1-t) | 2 | | | 6 | 2 | (-1-t) | |
|
=(7-t)((-1-t)×(-1-t)-2×2)-2((-6)×(-1-t)-2×6)+(-2)((-6)×2-(-1-t)×6)=(7-t)((1+2t+t2)-4)-2((6+6t)-12)-2((-12)-(-6-6t))=(7-t)(-3+2t+t2)-2(-6+6t)-2(-6+6t)=(-21+17t+5t2-t3)-(-12+12t)-(-12+12t)=-t3+5t2-7t+3p(t)=-t3+5t2-7t+3The Cayley-Hamilton theorem yields that
O=p(A)=-A3+5A2-7A+3IRearranging terms, we have
:. 3I = A^3-5A^2+7A:. 3I = A(A^2-5A+7I):. A^-1 = 1/3(A^2-5A+7I)Now, first we find
A^2-5A+7I= | | 7×7+2×-6-2×6 | 7×2+2×-1-2×2 | 7×-2+2×2-2×-1 | | | -6×7-1×-6+2×6 | -6×2-1×-1+2×2 | -6×-2-1×2+2×-1 | | | 6×7+2×-6-1×6 | 6×2+2×-1-1×2 | 6×-2+2×2-1×-1 | |
|
= | | 49-12-12 | 14-2-4 | -14+4+2 | | | -42+6+12 | -12+1+4 | 12-2-2 | | | 42-12-6 | 12-2-2 | -12+4+1 | |
|
A^2 - 5 × A | = | | - | | = | | 25+35 | 8+10 | -8-10 | | | -24-30 | -7-5 | 8+10 | | | 24+30 | 8+10 | -7-5 | |
| = | |
A^2 - 5 × A + 7 × I | = | | + | | = | | -10+7 | -2+0 | 2+0 | | | 6+0 | -2+7 | -2+0 | | | -6+0 | -2+0 | -2+7 | |
| = | |
Now,
A^-1 = 1/3(A^2-5A+7I)
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then
1. Example [[3,1,1],[-1,2,1],[1,1,1]] (Previous example) | 3. Example [[2,3],[4,10]] (Next example) |