Home > Matrix & Vector calculators > Solving systems of linear equations using Gauss Seidel method example

5. Gauss Seidel method example ( Enter your problem )
  1. Example 2x+y=8,x+2y=1
  2. Example 2x+5y=16,3x+y=11
  3. Example 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8
  4. Example x+y+z=7,x+2y+2z=13,x+3y+z=13
Other related methods
  1. Inverse Matrix method
  2. Cramer's Rule method
  3. Gauss-Jordan Elimination method
  4. Gauss Elimination Back Substitution method
  5. Gauss Seidel method
  6. Gauss Jacobi method
  7. Elimination method
  8. LU decomposition using Gauss Elimination method
  9. LU decomposition using Doolittle's method
  10. LU decomposition using Crout's method
  11. Cholesky decomposition method
  12. SOR (Successive over-relaxation) method
  13. Relaxation method

1. Example 2x+y=8,x+2y=1
(Previous example)
3. Example 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8
(Next example)

2. Example 2x+5y=16,3x+y=11





Solve Equations 2x+5y=16,3x+y=11 using Gauss Seidel method

Solution:
Total Equations are 2

2x+5y=16

3x+y=11


The coefficient matrix of the given system is not diagonally dominant.
Hence, we re-arrange the equations as follows, such that the elements in the coefficient matrix are diagonally dominant.
3x+y=11

2x+5y=16


From the above equations
x_(k+1)=1/3(11-y_(k))

y_(k+1)=1/5(16-2x_(k+1))

Initial gauss (x,y) = (0,0)

Solution steps are
1^(st) Approximation

x_1=1/3[11-(0)]=1/3[11]=3.6667

y_1=1/5[16-2(3.6667)]=1/5[8.6667]=1.7333

2^(nd) Approximation

x_2=1/3[11-(1.7333)]=1/3[9.2667]=3.0889

y_2=1/5[16-2(3.0889)]=1/5[9.8222]=1.9644

3^(rd) Approximation

x_3=1/3[11-(1.9644)]=1/3[9.0356]=3.0119

y_3=1/5[16-2(3.0119)]=1/5[9.9763]=1.9953

4^(th) Approximation

x_4=1/3[11-(1.9953)]=1/3[9.0047]=3.0016

y_4=1/5[16-2(3.0016)]=1/5[9.9968]=1.9994

5^(th) Approximation

x_5=1/3[11-(1.9994)]=1/3[9.0006]=3.0002

y_5=1/5[16-2(3.0002)]=1/5[9.9996]=1.9999

6^(th) Approximation

x_6=1/3[11-(1.9999)]=1/3[9.0001]=3

y_6=1/5[16-2(3)]=1/5[9.9999]=2


Solution By Gauss Seidel Method.
x=3~=3

y=2~=2

Iterations are tabulated as below
Iterationxy
13.66671.7333
23.08891.9644
33.01191.9953
43.00161.9994
53.00021.9999
632



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example 2x+y=8,x+2y=1
(Previous example)
3. Example 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.