Solve Equations 2x+5y=16,3x+y=11 using Gauss Seidel method
Solution:
Total Equations are 2
2x+5y=16
3x+y=11
The coefficient matrix of the given system is not diagonally dominant.
Hence, we re-arrange the equations as follows, such that the elements in the coefficient matrix are diagonally dominant.
3x+y=11
2x+5y=16
From the above equations
x_(k+1)=1/3(11-y_(k))
y_(k+1)=1/5(16-2x_(k+1))
Initial gauss (x,y) = (0,0)
Solution steps are
1^(st) Approximation
x_1=1/3[11-(0)]=1/3[11]=3.6667
y_1=1/5[16-2(3.6667)]=1/5[8.6667]=1.7333
2^(nd) Approximation
x_2=1/3[11-(1.7333)]=1/3[9.2667]=3.0889
y_2=1/5[16-2(3.0889)]=1/5[9.8222]=1.9644
3^(rd) Approximation
x_3=1/3[11-(1.9644)]=1/3[9.0356]=3.0119
y_3=1/5[16-2(3.0119)]=1/5[9.9763]=1.9953
4^(th) Approximation
x_4=1/3[11-(1.9953)]=1/3[9.0047]=3.0016
y_4=1/5[16-2(3.0016)]=1/5[9.9968]=1.9994
5^(th) Approximation
x_5=1/3[11-(1.9994)]=1/3[9.0006]=3.0002
y_5=1/5[16-2(3.0002)]=1/5[9.9996]=1.9999
6^(th) Approximation
x_6=1/3[11-(1.9999)]=1/3[9.0001]=3
y_6=1/5[16-2(3)]=1/5[9.9999]=2
Solution By Gauss Seidel Method.
x=3~=3
y=2~=2
Iterations are tabulated as below
Iteration | x | y |
1 | 3.6667 | 1.7333 |
2 | 3.0889 | 1.9644 |
3 | 3.0119 | 1.9953 |
4 | 3.0016 | 1.9994 |
5 | 3.0002 | 1.9999 |
6 | 3 | 2 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then