Home > Statistical Methods calculators > Fitting second degree parabola - Curve fitting example

2. Fitting second degree parabola - Curve fitting example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

1. Formula & Example-1
(Previous example)
3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
(Next method)

2. Example-2





Calculate Fitting second degree parabola - Curve fitting using Least square method
XY
199640
199750
199862
199958
200060


Solution:
The equation is `y = a + bx + cx^2` and the normal equations are

`sum y = an + b sum x + c sum x^2`

`sum xy = a sum x + b sum x^2 + c sum x^3`

`sum x^2y = a sum x^2 + b sum x^3 + c sum x^4`


`X``y``x = X - 1998``x^2``x^3``x^4``x*y``x^2*y`
199640-24-816-80160
199750-11-11-5050
199862000000
19995811115858
20006024816120240
------------------------
999027001003448508


Substituting these values in the normal equations
`270=5a+0b+10c`

`48=0a+10b+0c`

`508=10a+0b+34c`


Solving these 3 equations using inverse matrix method,
Here `5a+10c=270`
`10b=48`
`10a+34c=508`

Now converting given equations into matrix form
`[[5,0,10],[0,10,0],[10,0,34]] [[a],[b],[c]]=[[270],[48],[508]]`

Now, A = `[[5,0,10],[0,10,0],[10,0,34]]`, X = `[[a],[b],[c]]` and B = `[[270],[48],[508]]`

`:. AX = B`

`:. X = A^-1 B`

`|A|` = 
 `5`  `0`  `10` 
 `0`  `10`  `0` 
 `10`  `0`  `34` 


 =
 `5` × 
 `10`  `0` 
 `0`  `34` 
 `+0` × 
 `0`  `0` 
 `10`  `34` 
 `+10` × 
 `0`  `10` 
 `10`  `0` 


`=5 xx (10 × 34 - 0 × 0) +0 xx (0 × 34 - 0 × 10) +10 xx (0 × 0 - 10 × 10)`

`=5 xx (340 +0) +0 xx (0 +0) +10 xx (0 -100)`

`=5 xx (340) - +0 xx (0) +10 xx (-100)`

`= 1700 +0 -1000`

`=700`


`"Here, " |A| = 700 != 0`

`:. A^(-1) " is possible."`

`Adj(A)` = 
Adj
`5``0``10`
`0``10``0`
`10``0``34`


 = 
 + 
 `10`  `0` 
 `0`  `34` 
 - 
 `0`  `0` 
 `10`  `34` 
 + 
 `0`  `10` 
 `10`  `0` 
 - 
 `0`  `10` 
 `0`  `34` 
 + 
 `5`  `10` 
 `10`  `34` 
 - 
 `5`  `0` 
 `10`  `0` 
 + 
 `0`  `10` 
 `10`  `0` 
 - 
 `5`  `10` 
 `0`  `0` 
 + 
 `5`  `0` 
 `0`  `10` 
T


 = 
`+(10 × 34 - 0 × 0)``-(0 × 34 - 0 × 10)``+(0 × 0 - 10 × 10)`
`-(0 × 34 - 10 × 0)``+(5 × 34 - 10 × 10)``-(5 × 0 - 0 × 10)`
`+(0 × 0 - 10 × 10)``-(5 × 0 - 10 × 0)``+(5 × 10 - 0 × 0)`
T


 = 
`+(340 +0)``-(0 +0)``+(0 -100)`
`-(0 +0)``+(170 -100)``-(0 +0)`
`+(0 -100)``-(0 +0)``+(50 +0)`
T


 = 
`340``0``-100`
`0``70``0`
`-100``0``50`
T


 = 
`340``0``-100`
`0``70``0`
`-100``0``50`



`"Now, "A^(-1)=1/|A| × Adj(A)`

`"Here, "X = A^(-1) × B`

`:. X = 1/|A| × Adj(A) × B`

 = `1/(700)` ×
`340``0``-100`
`0``70``0`
`-100``0``50`
×
`270`
`48`
`508`


 = `1/(700)` ×
`340×270+0×48-100×508`
`0×270+70×48+0×508`
`-100×270+0×48+50×508`


 = `1/(700)` ×
`41000`
`3360`
`-1600`


 = 
`410/7`
`24/5`
`-16/7`


`:.[[a],[b],[c]]=[[410/7],[24/5],[-16/7]]`

`:. a=410/7, b=24/5, c=-16/7`

Now substituting this values in the equation is `y = a + bx + cx^2`, we get

`y = 410/7 +24/5x-16/7x^2`

`y = 410/7 +24/5(X-1998)-16/7(X-1998)^2`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.