Home > Statistical Methods calculators > Fitting second degree parabola - Curve fitting example

2. Fitting second degree parabola - Curve fitting example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola (y=a+bx+cx2)
  3. Cubic equation (y=a+bx+cx2+dx3)
  4. Exponential equation (y=aebx)
  5. Exponential equation (y=abx)
  6. Exponential equation (y=axb)

1. Formula & Example-1
(Previous example)
3. Cubic equation (y=a+bx+cx2+dx3)
(Next method)

2. Example-2





Calculate Fitting second degree parabola - Curve fitting using Least square method
XY
199640
199750
199862
199958
200060


Solution:
The equation is y=a+bx+cx2 and the normal equations are

y=an+bx+cx2

xy=ax+bx2+cx3

x2y=ax2+bx3+cx4


Xyx=X-1998x2x3x4xyx2y
199640-24-816-80160
199750-11-11-5050
199862000000
19995811115858
20006024816120240
------------------------
999027001003448508


Substituting these values in the normal equations
270=5a+0b+10c

48=0a+10b+0c

508=10a+0b+34c


Solving these 3 equations using inverse matrix method,
Here 5a+10c=270
10b=48
10a+34c=508

Now converting given equations into matrix form
[5010010010034][abc]=[27048508]

Now, A = [5010010010034], X = [abc] and B = [27048508]

AX=B

X=A-1B

|A| = 
 5  0  10 
 0  10  0 
 10  0  34 


 =
 5 × 
 10  0 
 0  34 
 +0 × 
 0  0 
 10  34 
 +10 × 
 0  10 
 10  0 


=5×(10×34-0×0)+0×(0×34-0×10)+10×(0×0-10×10)

=5×(340+0)+0×(0+0)+10×(0-100)

=5×(340)-+0×(0)+10×(-100)

=1700+0-1000

=700


Here, |A|=7000

A-1 is possible.

Adj(A) = 
Adj
5010
0100
10034


 = 
 + 
 10  0 
 0  34 
 - 
 0  0 
 10  34 
 + 
 0  10 
 10  0 
 - 
 0  10 
 0  34 
 + 
 5  10 
 10  34 
 - 
 5  0 
 10  0 
 + 
 0  10 
 10  0 
 - 
 5  10 
 0  0 
 + 
 5  0 
 0  10 
T


 = 
+(10×34-0×0)-(0×34-0×10)+(0×0-10×10)
-(0×34-10×0)+(5×34-10×10)-(5×0-0×10)
+(0×0-10×10)-(5×0-10×0)+(5×10-0×0)
T


 = 
+(340+0)-(0+0)+(0-100)
-(0+0)+(170-100)-(0+0)
+(0-100)-(0+0)+(50+0)
T


 = 
3400-100
0700
-100050
T


 = 
3400-100
0700
-100050



Now, A-1=1|A|×Adj(A)

Here, X=A-1×B

X=1|A|×Adj(A)×B

 = 1700 ×
3400-100
0700
-100050
×
270
48
508


 = 1700 ×
340×270+0×48-100×508
0×270+70×48+0×508
-100×270+0×48+50×508


 = 1700 ×
41000
3360
-1600


 = 
4107
245
-167


[abc]=[4107245-167]

a=4107,b=245,c=-167

Now substituting this values in the equation is y=a+bx+cx2, we get

y=4107+245x-167x2

y=4107+245(X-1998)-167(X-1998)2


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Cubic equation (y=a+bx+cx2+dx3)
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.