Home > Statistical Methods calculators > Fitting exponential equation (y=ab^x) - Curve fitting example

5. Fitting exponential equation (y=ab^x) - Curve fitting example ( Enter your problem )
  1. Formula & Examples (taking log)
  2. Formula & Examples (taking ln)
Other related methods
  1. Straight line (y = a + bx)
  2. Second degree parabola `(y = a + bx + cx^2)`
  3. Cubic equation `(y = a + bx + cx^2 + dx^3)`
  4. Exponential equation `(y=ae^(bx))`
  5. Exponential equation `(y=ab^x)`
  6. Exponential equation `(y=ax^b)`

4. Exponential equation `(y=ae^(bx))`
(Previous method)
2. Formula & Examples (taking ln)
(Next example)

1. Formula & Examples (taking log)





Formula
The exponential equation is `y=ab^x`
taking logarithm on both sides, we get

`log_(10)y=log_(10)(ab^x)`

`log_(10)y=log_(10)a+log_(10)(b^x)`

`log_(10)y=log_(10)a+x log_(10)b`

`Y=A+Bx` where `Y=log_(10)y, A=log_(10)a, B=log_(10)b`

which linear in Y,x

So the corresponding normal equations are

`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`

Examples
1. Calculate Fitting exponential equation `(y=ab^x)` - Curve fitting using Least square method
XY
010
121
235
359
492
5200
6400
7610


Solution:
The curve to be fitted is `y=ab^x`

taking logarithm on both sides, we get
`log_(10)y=log_(10)a+x log_(10)b`

`Y=A+Bx` where `Y=log_(10)y, A=log_(10)a, B=log_(10)b`

which linear in Y,x
So the corresponding normal equations are
`sum Y = nA + B sum x`

`sum xY = A sum x + B sum x^2`


The values are calculated using the following table
`x``y``Y=log_(10)(y)``x^2``x*Y`
010100
1211.322211.3222
2351.544143.0881
3591.770995.3126
4921.9638167.8552
52002.3012511.5051
64002.60213615.6124
76102.78534919.4973
---------------
`sum x=28``sum y=1427``sum Y=15.2893``sum x^2=140``sum x*Y=64.1929`


Substituting these values in the normal equations
`8A+28B=15.2893`

`28A+140B=64.1929`


Solving these two equations using Elimination method,

`8a+28b=15.2893`

`:.8a+28b=15.29`

and `28a+140b=64.1929`

`:.28a+140b=64.19`

`8a+28b=15.2893 ->(1)`

`28a+140b=64.1929 ->(2)`

equation`(1) xx 7 =>56a+196b=107.0251`

equation`(2) xx 2 =>56a+280b=128.3858`

Substracting `=>-84b=-21.3607`

`=>84b=21.3607`

`=>b=21.3607/84`

`=>b=0.254294`

Putting `b=0.254294` in equation `(1)`, we have

`8a+28(0.254294)=15.2893`

`=>8a=15.2893-7.120233`

`=>8a=8.169067`

`=>a=8.169067/8`

`=>a=1.021133`

`:. a=1.021133" and "b=0.254294`


we obtain `A=1.0211,B=0.2543`

`:. a=antilog_10(A)=antilog_10(1.0211)=10.4986`

and `b=antilog_10(B)=antilog_10(0.2543)=1.7959`

Now substituting this values in the equation is `y = a b^x`, we get

`y = 10.4986 * (1.7959)^x`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Exponential equation `(y=ae^(bx))`
(Previous method)
2. Formula & Examples (taking ln)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.