Formula
The exponential equation is y=abx
taking logarithm on both sides, we get
log10y=log10(abx)
log10y=log10a+log10(bx)
log10y=log10a+xlog10b
Y=A+Bx where Y=log10y,A=log10a,B=log10b
which linear in Y,x
So the corresponding normal equations are
∑Y=nA+B∑x
∑xY=A∑x+B∑x2
|
Examples
1. Calculate Fitting exponential equation (y=abx) - Curve fitting using Least square method
X | Y |
0 | 10 |
1 | 21 |
2 | 35 |
3 | 59 |
4 | 92 |
5 | 200 |
6 | 400 |
7 | 610 |
Solution:The curve to be fitted is
y=abxtaking logarithm on both sides, we get
log10y=log10a+xlog10bY=A+Bx where
Y=log10y,A=log10a,B=log10bwhich linear in Y,x
So the corresponding normal equations are
∑Y=nA+B∑x∑xY=A∑x+B∑x2The values are calculated using the following table
x | y | Y=log10(y) | x2 | x⋅Y |
0 | 10 | 1 | 0 | 0 |
1 | 21 | 1.3222 | 1 | 1.3222 |
2 | 35 | 1.5441 | 4 | 3.0881 |
3 | 59 | 1.7709 | 9 | 5.3126 |
4 | 92 | 1.9638 | 16 | 7.8552 |
5 | 200 | 2.301 | 25 | 11.5051 |
6 | 400 | 2.6021 | 36 | 15.6124 |
7 | 610 | 2.7853 | 49 | 19.4973 |
--- | --- | --- | --- | --- |
∑x=28 | ∑y=1427 | ∑Y=15.2893 | ∑x2=140 | ∑x⋅Y=64.1929 |
Substituting these values in the normal equations
8A+28B=15.289328A+140B=64.1929Solving these two equations using Elimination method,
8a+28b=15.2893
∴8a+28b=15.29
and 28a+140b=64.1929
∴28a+140b=64.19
8a+28b=15.2893→(1)
28a+140b=64.1929→(2)
equation(1)×7⇒56a+196b=107.0251
equation(2)×2⇒56a+280b=128.3858
Substracting ⇒-84b=-21.3607
⇒84b=21.3607
⇒b=21.360784
⇒b=0.254294
Putting b=0.254294 in equation (1), we have
8a+28(0.254294)=15.2893
⇒8a=15.2893-7.120233
⇒8a=8.169067
⇒a=8.1690678
⇒a=1.021133
∴a=1.021133 and b=0.254294
we obtain
A=1.0211,B=0.2543∴a=antilog10(A)=antilog10(1.0211)=10.4986and
b=antilog10(B)=antilog10(0.2543)=1.7959Now substituting this values in the equation is
y=abx, we get
y=10.4986⋅(1.7959)x
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then