Home > Numerical methods calculators > Numerical Integration using Boole's Rule example

4. Boole's rule (Numerical integration) example ( Enter your problem )
  1. Formula & Example-1 (table data)
  2. Example-2 (`f(x)=1/x`)
Other related methods
  1. Trapezoidal rule
  2. Simpson's 1/3 rule
  3. Simpson's 3/8 rule
  4. Boole's rule
  5. Weddle's rule

3. Simpson's 3/8 rule
(Previous method)
2. Example-2 (`f(x)=1/x`)
(Next example)

1. Formula & Example-1 (table data)





Formula
1. Boole's Rule
`int y dx =(2h)/45 [7(y_0 + y_n) + 32(y_1+y_3+y_5+...) + 12(y_2+y_6+y_10+...) + 14(y_4+y_8+y_12+...)]`

Examples
1. Find Solution using Boole's rule
xf(x)
1.44.0552
1.64.9530
1.86.0436
2.07.3891
2.29.0250


Solution:
The value of table for `x` and `y`

x1.41.61.822.2
y4.05524.9536.04367.38919.025

Using Boole's Rule
`int y dx = (2h)/45 [7(y_0 + y_4) + 32(y_1+y_3) + 12(y_2) + 14()]`

`int y dx = (2xx0.2)/45 [7xx(4.0552 + 9.025) + 32xx(4.953+7.3891) + 12xx(6.0436) + 14xx()]`

`int y dx = (2xx0.2)/45 [7xx(13.0802) + 32xx(12.3421) + 12xx(6.0436) + 14xx(0)]`

`int y dx = 4.9692`

Solution by Boole's Rule is `4.9692`


2. Find Solution using Boole's rule
xf(x)
0.01.0000
0.10.9975
0.20.9900
0.30.9776
0.40.8604


Solution:
The value of table for `x` and `y`

x00.10.20.30.4
y10.99750.990.97760.8604

Using Boole's Rule
`int y dx = (2h)/45 [7(y_0 + y_4) + 32(y_1+y_3) + 12(y_2) + 14()]`

`int y dx = (2xx0.1)/45 [7xx(1 + 0.8604) + 32xx(0.9975+0.9776) + 12xx(0.99) + 14xx()]`

`int y dx = (2xx0.1)/45 [7xx(1.8604) + 32xx(1.9751) + 12xx(0.99) + 14xx(0)]`

`int y dx = 0.39158`

Solution by Boole's Rule is `0.39158`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Simpson's 3/8 rule
(Previous method)
2. Example-2 (`f(x)=1/x`)
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.