Formula
1. Euler Rule
`y_1=y_0+hf(x_0,y_0)`
|
Examples
1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Euler method (1st order derivative) Solution:Given `y'=(x-y)/(2), y(0)=1, h=0.1, y(0.2)=?`
Euler method
`y_1=y_0+hf(x_0,y_0)=1+(0.1)f(0,1)=1+(0.1)*(-0.5)=1+(-0.05)=0.95`
`y_2=y_1+hf(x_1,y_1)=0.95+(0.1)f(0.1,0.95)=0.95+(0.1)*(-0.425)=0.95+(-0.0425)=0.9075`
`:.y(0.2)=0.9075`
| `n` | `x_n` | `y_n` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | 0.1 | 0.95 |
| 1 | 0.1 | 0.95 | 0.2 | 0.9075 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then