Formula
5. Improved Euler method
`y_(m+1)=y_m+1/2 h[f(x_m,y_m) + f(x_m+h,y_m + hf(x_m,y_m))]`
|
Examples
1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Improved Euler method (1st order derivative) Solution:Given `y'=(x-y)/(2), y(0)=1, h=0.1, y(0.2)=?`
Here, `x_0=0,y_0=1,h=0.1,x_n=0.2`
`y'=(x-y)/(2)`
`:. f(x,y)=(x-y)/(2)`
Improved Euler method
`y_(m+1)=y_m+1/2 h[f(x_m,y_m) + f(x_m+h,y_m + hf(x_m,y_m))]`
`f(x_0,y_0)=f(0,1)=-0.5`
`f(x_0+h,y_0 + hf(x_0,y_0))=f(0.1,0.95)=-0.425`
`y_1=y_0+1/2 h[f(x_0,y_0) + f(x_0+h,y_0 + hf(x_0,y_0))]`
`y_1=1+0.1/2 * [-0.5-0.425]=0.9538`
`:.y(0.1)=0.9538`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`f(x_1,y_1)=f(0.1,0.9538)=-0.4269`
`f(x_1+h,y_1 + hf(x_1,y_1))=f(0.2,0.9111)=-0.3555`
`y_2=y_1+1/2 h[f(x_1,y_1) + f(x_1+h,y_1 + hf(x_1,y_1))]`
`y_2=0.9538+0.1/2 * [-0.4269-0.3555]=0.9146`
`:.y(0.2)=0.9146`
| `n` | `x_n` | `y_n` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | 0.1 | 0.9538 |
| 1 | 0.1 | 0.9538 | 0.2 | 0.9146 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then