Find y(0.5) for `y'=-2x-y`, `x_0=0, y_0=-1`, with step length 0.1 using Runge-Kutta 2 method (1st order derivative) Solution:Given `y'=-2x-y, y(0)=-1, h=0.1, y(0.5)=?`
Method-1 : Using formula `k_2=f(x_0+h,y_0+hk_1)`Second order R-K method
`k_1=f(x_0,y_0)=f(0,-1)=1`
`k_2=f(x_0+h,y_0+hk_1)=f(0.1,-0.9)=0.7`
`y_1=y_0+h/2(k_1+k_2)=-1+0.085=-0.915`
`:.y(0.1)=-0.915`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=f(x_1,y_1)=f(0.1,-0.915)=0.715`
`k_2=f(x_1+h,y_1+hk_1)=f(0.2,-0.8435)=0.4435`
`y_2=y_1+h/2(k_1+k_2)=-0.915+0.0579=-0.8571`
`:.y(0.2)=-0.8571`
Again taking `(x_2,y_2)` in place of `(x_1,y_1)` and repeat the process
`k_1=f(x_2,y_2)=f(0.2,-0.8571)=0.4571`
`k_2=f(x_2+h,y_2+hk_1)=f(0.3,-0.8114)=0.2114`
`y_3=y_2+h/2(k_1+k_2)=-0.8571+0.0334=-0.8237`
`:.y(0.3)=-0.8237`
Again taking `(x_3,y_3)` in place of `(x_2,y_2)` and repeat the process
`k_1=f(x_3,y_3)=f(0.3,-0.8237)=0.2237`
`k_2=f(x_3+h,y_3+hk_1)=f(0.4,-0.8013)=0.0013`
`y_4=y_3+h/2(k_1+k_2)=-0.8237+0.0112=-0.8124`
`:.y(0.4)=-0.8124`
Again taking `(x_4,y_4)` in place of `(x_3,y_3)` and repeat the process
`k_1=f(x_4,y_4)=f(0.4,-0.8124)=0.0124`
`k_2=f(x_4+h,y_4+hk_1)=f(0.5,-0.8112)=-0.1888`
`y_5=y_4+h/2(k_1+k_2)=-0.8124-0.0088=-0.8212`
`:.y(0.5)=-0.8212`
`:.y(0.5)=-0.8212`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | -1 | 1 | 0.7 | 0.1 | -0.915 |
| 1 | 0.1 | -0.915 | 0.715 | 0.4435 | 0.2 | -0.8571 |
| 2 | 0.2 | -0.8571 | 0.4571 | 0.2114 | 0.3 | -0.8237 |
| 3 | 0.3 | -0.8237 | 0.2237 | 0.0013 | 0.4 | -0.8124 |
| 4 | 0.4 | -0.8124 | 0.0124 | -0.1888 | 0.5 | -0.8212 |
Method-2 : Using formula `k_2=f(x_0+h/2,y_0+(hk_1)/2)`Second order R-K method
`k_1=f(x_0,y_0)=f(0,-1)=1`
`k_2=f(x_0+h/2,y_0+(hk_1)/2)=f(0.05,-0.95)=0.85`
`y_1=y_0+hk_2=-1+0.085=-0.915`
`:.y(0.1)=-0.915`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=f(x_1,y_1)=f(0.1,-0.915)=0.715`
`k_2=f(x_1+h/2,y_1+(hk_1)/2)=f(0.15,-0.8792)=0.5792`
`y_2=y_1+hk_2=-0.915+0.0579=-0.8571`
`:.y(0.2)=-0.8571`
Again taking `(x_2,y_2)` in place of `(x_1,y_1)` and repeat the process
`k_1=f(x_2,y_2)=f(0.2,-0.8571)=0.4571`
`k_2=f(x_2+h/2,y_2+(hk_1)/2)=f(0.25,-0.8342)=0.3342`
`y_3=y_2+hk_2=-0.8571+0.0334=-0.8237`
`:.y(0.3)=-0.8237`
Again taking `(x_3,y_3)` in place of `(x_2,y_2)` and repeat the process
`k_1=f(x_3,y_3)=f(0.3,-0.8237)=0.2237`
`k_2=f(x_3+h/2,y_3+(hk_1)/2)=f(0.35,-0.8125)=0.1125`
`y_4=y_3+hk_2=-0.8237+0.0112=-0.8124`
`:.y(0.4)=-0.8124`
Again taking `(x_4,y_4)` in place of `(x_3,y_3)` and repeat the process
`k_1=f(x_4,y_4)=f(0.4,-0.8124)=0.0124`
`k_2=f(x_4+h/2,y_4+(hk_1)/2)=f(0.45,-0.8118)=-0.0882`
`y_5=y_4+hk_2=-0.8124-0.0088=-0.8212`
`:.y(0.5)=-0.8212`
`:.y(0.5)=-0.8212`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | -1 | 1 | 0.85 | 0.1 | -0.915 |
| 1 | 0.1 | -0.915 | 0.715 | 0.5792 | 0.2 | -0.8571 |
| 2 | 0.2 | -0.8571 | 0.4571 | 0.3342 | 0.3 | -0.8237 |
| 3 | 0.3 | -0.8237 | 0.2237 | 0.1125 | 0.4 | -0.8124 |
| 4 | 0.4 | -0.8124 | 0.0124 | -0.0882 | 0.5 | -0.8212 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then