Find y(0.2) for `y'=-y`, `x_0=0, y_0=1`, with step length 0.1 using Runge-Kutta 2 method (1st order derivative) Solution:Given `y'=-y, y(0)=1, h=0.1, y(0.2)=?`
Method-1 : Using formula `k_2=hf(x_0+h,y_0+k_1)`Second order R-K method
`k_1=hf(x_0,y_0)=(0.1)f(0,1)=(0.1)*(-1)=-0.1`
`k_2=hf(x_0+h,y_0+k_1)=(0.1)f(0.1,0.9)=(0.1)*(-0.9)=-0.09`
`y_1=y_0+(k_1+k_2)/2=1-0.095=0.905`
`:.y(0.1)=0.905`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=hf(x_1,y_1)=(0.1)f(0.1,0.905)=(0.1)*(-0.905)=-0.0905`
`k_2=hf(x_1+h,y_1+k_1)=(0.1)f(0.2,0.8145)=(0.1)*(-0.8145)=-0.0815`
`y_2=y_1+(k_1+k_2)/2=0.905-0.086=0.819`
`:.y(0.2)=0.819`
`:.y(0.2)=0.819`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | -0.1 | -0.09 | 0.1 | 0.905 |
| 1 | 0.1 | 0.905 | -0.0905 | -0.0815 | 0.2 | 0.819 |
Method-2 : Using formula `k_2=hf(x_0+h/2,y_0+k_1/2)`Second order R-K method
`k_1=hf(x_0,y_0)=(0.1)f(0,1)=(0.1)*(-1)=-0.1`
`k_2=hf(x_0+h/2,y_0+k_1/2)=(0.1)f(0.05,0.95)=(0.1)*(-0.95)=-0.095`
`y_1=y_0+k_2=1-0.095=0.905`
`:.y(0.1)=0.905`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=hf(x_1,y_1)=(0.1)f(0.1,0.905)=(0.1)*(-0.905)=-0.0905`
`k_2=hf(x_1+h/2,y_1+k_1/2)=(0.1)f(0.15,0.8598)=(0.1)*(-0.8598)=-0.086`
`y_2=y_1+k_2=0.905-0.086=0.819`
`:.y(0.2)=0.819`
`:.y(0.2)=0.819`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | -0.1 | -0.095 | 0.1 | 0.905 |
| 1 | 0.1 | 0.905 | -0.0905 | -0.086 | 0.2 | 0.819 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then