3. Runge-Kutta 3 method (1st order derivative) example ( Enter your problem )
  1. Formula-1 & Example-1
  2. Example-2
  3. Example-3
  4. Formula-2 & Example-1
  5. Example-2
  6. Example-3
Other related methods
  1. Euler method (1st order derivative)
  2. Runge-Kutta 2 method (1st order derivative)
  3. Runge-Kutta 3 method (1st order derivative)
  4. Runge-Kutta 4 method (1st order derivative)
  5. Improved Euler method (1st order derivative)
  6. Modified Euler method (1st order derivative)
  7. Taylor Series method (1st order derivative)
  8. Euler method (2nd order derivative)
  9. Runge-Kutta 2 method (2nd order derivative)
  10. Runge-Kutta 3 method (2nd order derivative)
  11. Runge-Kutta 4 method (2nd order derivative)

2. Runge-Kutta 2 method (1st order derivative)
(Previous method)
2. Example-2
(Next example)

1. Formula-1 & Example-1





Formula
3. Third order R-K method
k_1=hf(x_0,y_0)
k_2=hf(x_0+h/2,y_0+k_1/2)
k_3=hf(x_0+h,y_0+2k_2-k_1)
y_1=y_0+1/6(k_1+4k_2+k_3)

Examples
1. Find y(0.2) for y'=(x-y)/2, x_0=0, y_0=1, with step length 0.1 using Runge-Kutta 3 method (1st order derivative)

Solution:
Given y'=(x-y)/2, y(0)=1, h=0.1, y(0.2)=?

Third order R-K method
k_1=hf(x_0,y_0)=(0.1)f(0,1)=(0.1)*(-0.5)=-0.05

k_2=hf(x_0+h/2,y_0+k_1/2)=(0.1)f(0.05,0.975)=(0.1)*(-0.4625)=-0.04625

k_3=hf(x_0+h,y_0+2k_2-k_1)=(0.1)f(0.1,0.9575)=(0.1)*(-0.42875)=-0.04288

y_1=y_0+1/6(k_1+4k_2+k_3)

y_1=1+1/6[-0.05+4(-0.04625)+(-0.04288)]

y_1=0.95369

:.y(0.1)=0.95369


Again taking (x_1,y_1) in place of (x_0,y_0) and repeat the process

k_1=hf(x_1,y_1)=(0.1)f(0.1,0.95369)=(0.1)*(-0.42684)=-0.04268

k_2=hf(x_1+h/2,y_1+k_1/2)=(0.1)f(0.15,0.93235)=(0.1)*(-0.39117)=-0.03912

k_3=hf(x_1+h,y_1+2k_2-k_1)=(0.1)f(0.2,0.91814)=(0.1)*(-0.35907)=-0.03591

y_2=y_1+1/6(k_1+4k_2+k_3)

y_2=0.95369+1/6[-0.04268+4(-0.03912)+(-0.03591)]

y_2=0.91451

:.y(0.2)=0.91451


:.y(0.2)=0.91451


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Runge-Kutta 2 method (1st order derivative)
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.