Formula
3. Third order R-K method
`k_1=hf(x_0,y_0)`
`k_2=hf(x_0+h/2,y_0+k_1/2)`
`k_3=hf(x_0+h,y_0+2k_2-k_1)`
`y_1=y_0+1/6(k_1+4k_2+k_3)`
|
Examples
1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Runge-Kutta 3 method (1st order derivative) Solution:Given `y'=(x-y)/(2), y(0)=1, h=0.1, y(0.2)=?`
Third order R-K method
`k_1=hf(x_0,y_0)=(0.1)f(0,1)=(0.1)*(-0.5)=-0.05`
`k_2=hf(x_0+h/2,y_0+k_1/2)=(0.1)f(0.05,0.975)=(0.1)*(-0.4625)=-0.0462`
`k_3=hf(x_0+h,y_0+2k_2-k_1)=(0.1)f(0.1,0.9575)=(0.1)*(-0.4288)=-0.0429`
`y_1=y_0+1/6(k_1+4k_2+k_3)`
`y_1=1+1/6[-0.05+4(-0.0462)+(-0.0429)]`
`y_1=0.9537`
`:.y(0.1)=0.9537`
Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process
`k_1=hf(x_1,y_1)=(0.1)f(0.1,0.9537)=(0.1)*(-0.4268)=-0.0427`
`k_2=hf(x_1+h/2,y_1+k_1/2)=(0.1)f(0.15,0.9323)=(0.1)*(-0.3912)=-0.0391`
`k_3=hf(x_1+h,y_1+2k_2-k_1)=(0.1)f(0.2,0.9181)=(0.1)*(-0.3591)=-0.0359`
`y_2=y_1+1/6(k_1+4k_2+k_3)`
`y_2=0.9537+1/6[-0.0427+4(-0.0391)+(-0.0359)]`
`y_2=0.9145`
`:.y(0.2)=0.9145`
`:.y(0.2)=0.9145`
| `n` | `x_n` | `y_n` | `k_1` | `k_2` | `k_3` | `x_(n+1)` | `y_(n+1)` |
| 0 | 0 | 1 | -0.05 | -0.0462 | -0.0429 | 0.1 | 0.9537 |
| 1 | 0.1 | 0.9537 | -0.0427 | -0.0391 | -0.0359 | 0.2 | 0.9145 |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then