4. Runge-Kutta 4 method (1st order derivative) example ( Enter your problem )
  1. Formula-1 & Example-1 : `y'=(x-y)/2`
  2. Example-2 : `y'=-2x-y`
  3. Example-3 : `y'=-y`
  4. Formula-2 & Example-1 : `y'=(x-y)/2`
  5. Example-2 : `y'=-2x-y`
  6. Example-3 : `y'=-y`
Other related methods
  1. Euler method (1st order derivative)
  2. Runge-Kutta 2 method (1st order derivative)
  3. Runge-Kutta 3 method (1st order derivative)
  4. Runge-Kutta 4 method (1st order derivative)
  5. Improved Euler method / Modified Euler method (1st order derivative)
  6. Midpoint Euler method (1st order derivative)
  7. Taylor Series method (1st order derivative)
  8. Euler method (2nd order derivative)
  9. Runge-Kutta 2 method (2nd order derivative)
  10. Runge-Kutta 3 method (2nd order derivative)
  11. Runge-Kutta 4 method (2nd order derivative)
  12. Improved Euler method / Modified Euler method (2nd order derivative)
  13. Midpoint Euler method (2nd order derivative)
  14. Taylor Series method (2nd order derivative)

3. Runge-Kutta 3 method (1st order derivative)
(Previous method)
2. Example-2 : `y'=-2x-y`
(Next example)

1. Formula-1 & Example-1 : `y'=(x-y)/2`





Formula
Forth order R-K method
`k_1=hf(x_n,y_n)`
`k_2=hf(x_n+h/2,y_n+k_1/2)`
`k_3=hf(x_n+h/2,y_n+k_2/2)`
`k_4=hf(x_n+h,y_n+k_3)`
`y_(n+1)=y_n+1/6(k_1+2k_2+2k_3+k_4)`

Examples
1. Find y(0.2) for `y'=(x-y)/2`, `x_0=0, y_0=1`, with step length 0.1 using Runge-Kutta 4 method (1st order derivative)

Solution:
Given `y'=(x-y)/(2), y(0)=1, h=0.1, y(0.2)=?`

Fourth order Runge-Kutta (RK4) method formula
`k_1=h f(x_n,y_n)

`k_2=h f(x_n+h/2,y_n+k_1/2

`k_3=h f(x_n+h/2,y_n+k_2/2

`k_4=h f(x_n+h,y_n+k_3

`y_(n+1)=y_n+1/6(k_1+2k_2+2k_3+k_4)`



for `n=0,x_0=0,y_0=1`

`k_1=hf(x_0,y_0)`

`=(0.1)f(0,1)`

`=(0.1)*(-0.5)`

`=-0.05`

`k_2=hf(x_0+h/2,y_0+k_1/2)`

`=(0.1)f(0.05,0.975)`

`=(0.1)*(-0.4625)`

`=-0.0462`

`k_3=hf(x_0+h/2,y_0+k_2/2)`

`=(0.1)f(0.05,0.9769)`

`=(0.1)*(-0.4634)`

`=-0.0463`

`k_4=hf(x_0+h,y_0+k_3)`

`=(0.1)f(0.1,0.9537)`

`=(0.1)*(-0.4268)`

`=-0.0427`

`y_1=y_0+1/6(k_1+2k_2+2k_3+k_4)`

`=1+1/6[-0.05+2(-0.0462)+2(-0.0463)+(-0.0427)]`

`=0.9537`

`x_1=x_0+h=0+0.1=0.1`



for `n=1,x_1=0.1,y_1=0.9537`

`k_1=hf(x_1,y_1)`

`=(0.1)f(0.1,0.9537)`

`=(0.1)*(-0.4268)`

`=-0.0427`

`k_2=hf(x_1+h/2,y_1+k_1/2)`

`=(0.1)f(0.15,0.9323)`

`=(0.1)*(-0.3912)`

`=-0.0391`

`k_3=hf(x_1+h/2,y_1+k_2/2)`

`=(0.1)f(0.15,0.9341)`

`=(0.1)*(-0.3921)`

`=-0.0392`

`k_4=hf(x_1+h,y_1+k_3)`

`=(0.1)f(0.2,0.9145)`

`=(0.1)*(-0.3572)`

`=-0.0357`

`y_2=y_1+1/6(k_1+2k_2+2k_3+k_4)`

`=0.9537+1/6[-0.0427+2(-0.0391)+2(-0.0392)+(-0.0357)]`

`=0.9145`

`x_2=x_1+h=0.1+0.1=0.2`

`:.y(0.2)=0.9145`

`n``x_n``y_n``k_1``k_2``k_3``k_4``x_(n+1)``y_(n+1)`
001-0.05-0.0462-0.0463-0.04270.10.9537
10.10.9537-0.0427-0.0391-0.0392-0.03570.20.9145





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Runge-Kutta 3 method (1st order derivative)
(Previous method)
2. Example-2 : `y'=-2x-y`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.