7. Taylor Series method (1st order derivative) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Euler method (1st order derivative)
  2. Runge-Kutta 2 method (1st order derivative)
  3. Runge-Kutta 3 method (1st order derivative)
  4. Runge-Kutta 4 method (1st order derivative)
  5. Improved Euler method (1st order derivative)
  6. Modified Euler method (1st order derivative)
  7. Taylor Series method (1st order derivative)
  8. Euler method (2nd order derivative)
  9. Runge-Kutta 2 method (2nd order derivative)
  10. Runge-Kutta 3 method (2nd order derivative)
  11. Runge-Kutta 4 method (2nd order derivative)

1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)

2. Example-2





Find y(0.5) for `y'=-2x-y`, `x_0=0, y_0=-1`, with step length 0.1 using Taylor Series method (1st order derivative)

Solution:
Given `y'=-2x-y, y(0)=-1, h=0.1, y(0.5)=?`

Here, `x_0=0,y_0=-1,h=0.1,x_n=0.5`

Differentiating successively, we get
Derivative steps

`d/(dx)(-2x-y)`

`=-d/(dx)(2x)-d/(dx)(y)`

`=-2-y'`

Now, `d^2/(dx^2)(-2x-y)=d/(dx)(-2-y')`

`=-d/(dx)(2)-d/(dx)(y')`

`=-0-y''`

`=0-y''`

`=-y''`

Now, `d^3/(dx^3)(-2x-y)=d/(dx)(-y'')`

`=-y'''`


`y'=-2x-y`

`y''=-2-y'`

`y'''=-y''`

`y''''=-y'''`

Now substituting, we get
`y_0'=-2x_0-y_0=1`

`y_0''=-2-y_0'=-3`

`y_0'''=-y_0''=3`

`y_0''''=-y_0'''=-3`

Putting these values in Taylor Series, we have
`y_1 = y_0 + hy_0' + h^2/(2!) y_0'' + h^3/(3!) y_0''' + h^4/(4!) y_0'''' + ...`

`=-1+0.1*(1)+(0.1)^2/(2!)*(-3)+(0.1)^3/(3!)*(3)+(0.1)^4/(4!)*(-3)+...`

`=-1+0.1-0.015+0+0+...`

`=-0.9145`


Again taking `(x_1,y_1)` in place of `(x_0,y_0)` and repeat the process

Now substituting, we get
`y_1'=-2x_1-y_1=0.7145`

`y_1''=-2-y_1'=-2.7145`

`y_1'''=-y_1''=2.7145`

`y_1''''=-y_1'''=-2.7145`

Putting these values in Taylor Series, we have
`y_2 = y_1 + hy_1' + h^2/(2!) y_1'' + h^3/(3!) y_1''' + h^4/(4!) y_1'''' + ...`

`=-0.9145+0.1*(0.7145)+(0.1)^2/(2!)*(-2.7145)+(0.1)^3/(3!)*(2.7145)+(0.1)^4/(4!)*(-2.7145)+...`

`=-0.9145+0.0715-0.0136+0+0+...`

`=-0.8562`


Again taking `(x_2,y_2)` in place of `(x_1,y_1)` and repeat the process

Now substituting, we get
`y_2'=-2x_2-y_2=0.4562`

`y_2''=-2-y_2'=-2.4562`

`y_2'''=-y_2''=2.4562`

`y_2''''=-y_2'''=-2.4562`

Putting these values in Taylor Series, we have
`y_3 = y_2 + hy_2' + h^2/(2!) y_2'' + h^3/(3!) y_2''' + h^4/(4!) y_2'''' + ...`

`=-0.8562+0.1*(0.4562)+(0.1)^2/(2!)*(-2.4562)+(0.1)^3/(3!)*(2.4562)+(0.1)^4/(4!)*(-2.4562)+...`

`=-0.8562+0.0456-0.0123+0+0+...`

`=-0.8225`


Again taking `(x_3,y_3)` in place of `(x_2,y_2)` and repeat the process

Now substituting, we get
`y_3'=-2x_3-y_3=0.2225`

`y_3''=-2-y_3'=-2.2225`

`y_3'''=-y_3''=2.2225`

`y_3''''=-y_3'''=-2.2225`

Putting these values in Taylor Series, we have
`y_4 = y_3 + hy_3' + h^2/(2!) y_3'' + h^3/(3!) y_3''' + h^4/(4!) y_3'''' + ...`

`=-0.8225+0.1*(0.2225)+(0.1)^2/(2!)*(-2.2225)+(0.1)^3/(3!)*(2.2225)+(0.1)^4/(4!)*(-2.2225)+...`

`=-0.8225+0.0222-0.0111+0+0+...`

`=-0.811`


Again taking `(x_4,y_4)` in place of `(x_3,y_3)` and repeat the process

Now substituting, we get
`y_4'=-2x_4-y_4=0.011`

`y_4''=-2-y_4'=-2.011`

`y_4'''=-y_4''=2.011`

`y_4''''=-y_4'''=-2.011`

Putting these values in Taylor Series, we have
`y_5 = y_4 + hy_4' + h^2/(2!) y_4'' + h^3/(3!) y_4''' + h^4/(4!) y_4'''' + ...`

`=-0.811+0.1*(0.011)+(0.1)^2/(2!)*(-2.011)+(0.1)^3/(3!)*(2.011)+(0.1)^4/(4!)*(-2.011)+...`

`=-0.811+0.0011-0.0101+0+0+...`

`=-0.8196`

`:.y(0.5)=-0.8196`

`n``x_n``y_n``y_n'``y_n''``y_n'''``y_n''''``x_(n+1)``y_(n+1)`
00-11-33-30.1-0.9145
10.1-0.91450.7145-2.71452.7145-2.71450.2-0.8562
20.2-0.85620.4562-2.45622.4562-2.45620.3-0.8225
30.3-0.82250.2225-2.22252.2225-2.22250.4-0.811
40.4-0.8110.011-2.0112.011-2.0110.5-0.8196





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.