7. Taylor Series method (first order differential equation) example ( Enter your problem )
  1. Formula & Example-1 : `y''=1+2xy-x^2z`
  2. Example-2 : `y''=xz^2-y^2`
  3. Example-3 : `y''=-4z-4y`
Other related methods
  1. Euler method (first order differential equation)
  2. Runge-Kutta 2 method (first order differential equation)
  3. Runge-Kutta 3 method (first order differential equation)
  4. Runge-Kutta 4 method (first order differential equation)
  5. Improved Euler method / Modified Euler method (first order differential equation)
  6. Midpoint Euler method (first order differential equation)
  7. Taylor Series method (first order differential equation)
  8. Euler method (second order differential equation)
  9. Runge-Kutta 2 method (second order differential equation)
  10. Runge-Kutta 3 method (second order differential equation)
  11. Runge-Kutta 4 method (second order differential equation)
  12. Improved Euler method / Modified Euler method (second order differential equation)
  13. Midpoint Euler method (second order differential equation)
  14. Taylor Series method (second order differential equation)

1. Formula & Example-1 : `y''=1+2xy-x^2z`
(Previous example)
3. Example-3 : `y''=-4z-4y`
(Next example)

2. Example-2 : `y''=xz^2-y^2`





Find y(0.5) for `y'=-2x-y`, `x_0=0, y_0=-1`, with step length 0.1 using Taylor Series method (first order differential equation)

Solution:
Given `y'=-2x-y, y(0)=-1, h=0.1, y(0.5)=?`

Here, `x_0=0,y_0=-1,h=0.1,x_n=0.5`

Differentiating successively, we get
Derivative steps

`d/(dx)(-2x-y)`

`=-d/(dx)(2x)-d/(dx)(y)`

`=-2-y'`

Now, `d^2/(dx^2)(-2x-y)=d/(dx)(-2-y')`

`=-d/(dx)(2)-d/(dx)(y')`

`=-0-y''`

`=0-y''`

`=-y''`

Now, `d^3/(dx^3)(-2x-y)=d/(dx)(-y'')`

`=-y'''`


`y'=-2x-y`

`y''=-2-y'`

`y'''=-y''`

`y^(iv)=-y'''`

Now substituting, we get
`y_0'=-2x_0-y_0=1`

`y_0''=-2-y_0'=-3`

`y_0'''=-y_0''=3`

`y_0^(iv)=-y_0'''=-3`

Putting these values in Taylor Series, we have
`y_1 = y_0 + hy_0' + h^2/(2!) y_0'' + h^3/(3!) y_0''' + h^4/(4!) y_0^(iv) + ...`



for `n=0,x_0=0,y_0=-1`

`=-1+0.1*(1)+(0.1)^2/(2)*(-3)+(0.1)^3/(6)*(3)+(0.1)^4/(24)*(-3)+...`

`=-1+0.1-0.015+0+0+...`

`=-0.9145`

`x_1=x_0+h=0+0.1=0.1`

Now substituting, we get
`y_1'=-2x_1-y_1=0.7145`

`y_1''=-2-y_1'=-2.7145`

`y_1'''=-y_1''=2.7145`

`y_1^(iv)=-y_1'''=-2.7145`

Putting these values in Taylor Series, we have
`y_2 = y_1 + hy_1' + h^2/(2!) y_1'' + h^3/(3!) y_1''' + h^4/(4!) y_1^(iv) + ...`



for `n=1,x_1=0.1,y_1=-0.9145`

`=-0.9145+0.1*(0.7145)+(0.1)^2/(2)*(-2.7145)+(0.1)^3/(6)*(2.7145)+(0.1)^4/(24)*(-2.7145)+...`

`=-0.9145+0.0715-0.0136+0+0+...`

`=-0.8562`

`x_2=x_1+h=0.1+0.1=0.2`

Now substituting, we get
`y_2'=-2x_2-y_2=0.4562`

`y_2''=-2-y_2'=-2.4562`

`y_2'''=-y_2''=2.4562`

`y_2^(iv)=-y_2'''=-2.4562`

Putting these values in Taylor Series, we have
`y_3 = y_2 + hy_2' + h^2/(2!) y_2'' + h^3/(3!) y_2''' + h^4/(4!) y_2^(iv) + ...`



for `n=2,x_2=0.2,y_2=-0.8562`

`=-0.8562+0.1*(0.4562)+(0.1)^2/(2)*(-2.4562)+(0.1)^3/(6)*(2.4562)+(0.1)^4/(24)*(-2.4562)+...`

`=-0.8562+0.0456-0.0123+0+0+...`

`=-0.8225`

`x_3=x_2+h=0.2+0.1=0.3`

Now substituting, we get
`y_3'=-2x_3-y_3=0.2225`

`y_3''=-2-y_3'=-2.2225`

`y_3'''=-y_3''=2.2225`

`y_3^(iv)=-y_3'''=-2.2225`

Putting these values in Taylor Series, we have
`y_4 = y_3 + hy_3' + h^2/(2!) y_3'' + h^3/(3!) y_3''' + h^4/(4!) y_3^(iv) + ...`



for `n=3,x_3=0.3,y_3=-0.8225`

`=-0.8225+0.1*(0.2225)+(0.1)^2/(2)*(-2.2225)+(0.1)^3/(6)*(2.2225)+(0.1)^4/(24)*(-2.2225)+...`

`=-0.8225+0.0222-0.0111+0+0+...`

`=-0.811`

`x_4=x_3+h=0.3+0.1=0.4`

Now substituting, we get
`y_4'=-2x_4-y_4=0.011`

`y_4''=-2-y_4'=-2.011`

`y_4'''=-y_4''=2.011`

`y_4^(iv)=-y_4'''=-2.011`

Putting these values in Taylor Series, we have
`y_5 = y_4 + hy_4' + h^2/(2!) y_4'' + h^3/(3!) y_4''' + h^4/(4!) y_4^(iv) + ...`



for `n=4,x_4=0.4,y_4=-0.811`

`=-0.811+0.1*(0.011)+(0.1)^2/(2)*(-2.011)+(0.1)^3/(6)*(2.011)+(0.1)^4/(24)*(-2.011)+...`

`=-0.811+0.0011-0.0101+0+0+...`

`=-0.8196`

`x_5=x_4+h=0.4+0.1=0.5`

`:.y(0.5)=-0.8196`

`n``x_n``y_n``y_n'``y_n''``y_n'''``y_n^(iv)``x_(n+1)``y_(n+1)`
00-11-33-30.1-0.9145
10.1-0.91450.7145-2.71452.7145-2.71450.2-0.8562
20.2-0.85620.4562-2.45622.4562-2.45620.3-0.8225
30.3-0.82250.2225-2.22252.2225-2.22250.4-0.811
40.4-0.8110.011-2.0112.011-2.0110.5-0.8196





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1 : `y''=1+2xy-x^2z`
(Previous example)
3. Example-3 : `y''=-4z-4y`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.