Formula
put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)`
We have system of equations
`(dy)/(dx)=z=f(x,y,z)`
`(dz)/(dx)=g(x,y,z)`
Improved Euler method / Modified Euler method for second order differential equation formula
`y_(n+1)=y_n+h/2 [k_(1y) + k_(2y)]`
`k_(1y)=f(x_n,y_n,z_n)`
`k_(2y)=f(x_n+h,y_n+hk_(1y),z_n+hk_(1z))`
`z_(n+1)=z_n+h/2 [k_(1z) + k_(2z)]`
`k_(1z)=g(x_n,y_n,z_n)`
`k_(2z)=g(x_n+h,y_n+hk_(1y),z_n+hk_(1z))`
|
Examples
1. Find y(0.2) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1 using Improved Euler / Modified Euler method (2nd order derivative) Solution:Given `y^('')=1+2xy-x^2z, y(0)=1, y'(0)=0, h=0.1, y(0.2)=?`
put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)`
We have system of equations
`(dy)/(dx)=z=f(x,y,z)`
`(dz)/(dx)=1+2xy-x^2z=g(x,y,z)`
Here, `x_0=0,y_0=1,z_0=0,h=0.1,x_n=0.2`
Improved Euler method / Modified Euler method for second order differential equation formula
`y_(n+1)=y_n+h/2 [k_(1y) + k_(2y)]`
`k_(1y)=f(x_n,y_n,z_n)`
`k_(2y)=f(x_n+h,y_n+hk_(1y),z_n+hk_(1z))`
`z_(n+1)=z_n+h/2 [k_(1z) + k_(2z)]`
`k_(1z)=g(x_n,y_n,z_n)`
`k_(2z)=g(x_n+h,y_n+hk_(1y),z_n+hk_(1z))`
for `n=0,x_0=0,y_0=1,z_0=0`
`k_(1y)=f(x_0,y_0,z_0)`
`=f(0,1,0)`
`=0`
`k_(1z)=g(x_0,y_0,z_0)`
`=g(0,1,0)`
`=1`
`k_(2y)=f(x_0+h,y_0+hk_(1y),z_0+hk_(1z))`
`=f(0+0.1,1+0.1*0,0+0.1*1)`
`=f(0.1,1,0.1)`
`=0.1`
`k_(2z)=g(x_0+h,y_0+hk_(1y),z_0+hk_(1z))`
`=g(0+0.1,1+0.1*0,0+0.1*1)`
`=g(0.1,1,0.1)`
`=1.199`
`y_1=y_0+h/2 [k_(1y) + k_(2y)]`
`=1+0.1/2 [0 + 0.1]`
`=1.005`
`z_1=z_0+h/2 [k_(1z) + k_(2z)]`
`=0+0.1/2 [1 + 1.199]`
`=0.11`
`x_1=x_0+h=0+0.1=0.1`
for `n=1,x_1=0.1,y_1=1.005,z_1=0.11`
`k_(1y)=f(x_1,y_1,z_1)`
`=f(0.1,1.005,0.11)`
`=0.11`
`k_(1z)=g(x_1,y_1,z_1)`
`=g(0.1,1.005,0.11)`
`=1.1999`
`k_(2y)=f(x_1+h,y_1+hk_(1y),z_1+hk_(1z))`
`=f(0.1+0.1,1.005+0.1*0.11,0.11+0.1*1.1999)`
`=f(0.2,1.016,0.2299)`
`=0.2299`
`k_(2z)=g(x_1+h,y_1+hk_(1y),z_1+hk_(1z))`
`=g(0.1+0.1,1.005+0.1*0.11,0.11+0.1*1.1999)`
`=g(0.2,1.016,0.2299)`
`=1.3972`
`y_2=y_1+h/2 [k_(1y) + k_(2y)]`
`=1.005+0.1/2 [0.11 + 0.2299]`
`=1.022`
`x_2=x_1+h=0.1+0.1=0.2`
`:.y(0.2)=1.022`
| `n` | `x_n` | `y_n` | `z_n` | `x_(n+1)` | `y_(n+1)` | `z_(n+1)` |
| 0 | 0 | 1 | 0 | 0.1 | 1.005 | 0.11 |
| 1 | 0.1 | 1.005 | 0.11 | 0.2 | 1.022 | |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then