Find y(0.4) for `y''=xz^2-y^2`, `x_0=0, y_0=1, z_0=0`, with step length 0.2 using Improved Euler / Modified Euler method (2nd order derivative) Solution:Given `y^('')=xz^2-y^2, y(0)=1, y'(0)=0, h=0.2, y(0.4)=?`
put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)`
We have system of equations
`(dy)/(dx)=z=f(x,y,z)`
`(dz)/(dx)=xz^2-y^2=g(x,y,z)`
Here, `x_0=0,y_0=1,z_0=0,h=0.2,x_n=0.4`
Improved Euler method / Modified Euler method for second order differential equation formula
`y_(n+1)=y_n+h/2 [k_(1y) + k_(2y)]`
`k_(1y)=f(x_n,y_n,z_n)`
`k_(2y)=f(x_n+h,y_n+hk_(1y),z_n+hk_(1z))`
`z_(n+1)=z_n+h/2 [k_(1z) + k_(2z)]`
`k_(1z)=g(x_n,y_n,z_n)`
`k_(2z)=g(x_n+h,y_n+hk_(1y),z_n+hk_(1z))`
for `n=0,x_0=0,y_0=1,z_0=0`
`k_(1y)=f(x_0,y_0,z_0)`
`=f(0,1,0)`
`=0`
`k_(1z)=g(x_0,y_0,z_0)`
`=g(0,1,0)`
`=-1`
`k_(2y)=f(x_0+h,y_0+hk_(1y),z_0+hk_(1z))`
`=f(0+0.2,1+0.2*0,0+0.2*-1)`
`=f(0.2,1,-0.2)`
`=-0.2`
`k_(2z)=g(x_0+h,y_0+hk_(1y),z_0+hk_(1z))`
`=g(0+0.2,1+0.2*0,0+0.2*-1)`
`=g(0.2,1,-0.2)`
`=-0.992`
`y_1=y_0+h/2 [k_(1y) + k_(2y)]`
`=1+0.2/2 [0 + -0.2]`
`=0.98`
`z_1=z_0+h/2 [k_(1z) + k_(2z)]`
`=0+0.2/2 [-1 + -0.992]`
`=-0.1992`
`x_1=x_0+h=0+0.2=0.2`
for `n=1,x_1=0.2,y_1=0.98,z_1=-0.1992`
`k_(1y)=f(x_1,y_1,z_1)`
`=f(0.2,0.98,-0.1992)`
`=-0.1992`
`k_(1z)=g(x_1,y_1,z_1)`
`=g(0.2,0.98,-0.1992)`
`=-0.9525`
`k_(2y)=f(x_1+h,y_1+hk_(1y),z_1+hk_(1z))`
`=f(0.2+0.2,0.98+0.2*-0.1992,-0.1992+0.2*-0.9525)`
`=f(0.4,0.9402,-0.3897)`
`=-0.3897`
`k_(2z)=g(x_1+h,y_1+hk_(1y),z_1+hk_(1z))`
`=g(0.2+0.2,0.98+0.2*-0.1992,-0.1992+0.2*-0.9525)`
`=g(0.4,0.9402,-0.3897)`
`=-0.8232`
`y_2=y_1+h/2 [k_(1y) + k_(2y)]`
`=0.98+0.2/2 [-0.1992 + -0.3897]`
`=0.9211`
`x_2=x_1+h=0.2+0.2=0.4`
`:.y(0.4)=0.9211`
| `n` | `x_n` | `y_n` | `z_n` | `x_(n+1)` | `y_(n+1)` | `z_(n+1)` |
| 0 | 0 | 1 | 0 | 0.2 | 0.98 | -0.1992 |
| 1 | 0.2 | 0.98 | -0.1992 | 0.4 | 0.9211 | |
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then