1. Formula-1 & Example-1
Formula
2. Second order R-K method
Method-1 :
k1=hf(x0,y0,z0)
l1=hg(x0,y0,z0)
k2=hf(x0+h,y0+k1,z0+l1)
l2=hg(x0+h,y0+k1,z0+l1)
y1=y0+k1+k22
Method-2 :
k1=hf(x0,y0,z0)
l1=hg(x0,y0,z0)
k2=hf(x0+h2,y0+k12,z0+l12)
l2=hg(x0+h2,y0+k12,z0+l12)
y1=y0+k2
|
Examples
1. Find y(0.1) for y′′=1+2xy-x2z, x0=0,y0=1,z0=0, with step length 0.1 using Runge-Kutta 2 method (2nd order derivative) Solution:Given y′′=1+2xy-x2z,y(0)=1,y′(0)=0,h=0.1,y(0.1)=?put dydx=z and differentiate w.r.t. x, we obtain d2ydx2=dzdxWe have system of equations dydx=z=f(x,y,z)dzdx=1+2xy-x2z=g(x,y,z)Method-1 : Using formula k2=hf(x0+h,y0+k1,z0+l1)Second order R-K method for second order differential equation k1=hf(x0,y0,z0)=(0.1)⋅f(0,1,0)=(0.1)⋅(0)=0l1=hg(x0,y0,z0)=(0.1)⋅g(0,1,0)=(0.1)⋅(1)=0.1k2=hf(x0+h,y0+k1,z0+l1)=(0.1)⋅f(0.1,1,0.1)=(0.1)⋅(0.1)=0.01l2=hg(x0+h,y0+k1,z0+l1)=(0.1)⋅g(0.1,1,0.1)=(0.1)⋅(1.199)=0.1199y1=y0+k1+k22=1+0.005=1.005:.y(0.1)=1.005 :.y(0.1)=1.005 Method-2 : Using formula k_2=hf(x_0+h/2,y_0+k_1/2,z_0+l_1/2)Second order R-K method for second order differential equation k_1=hf(x_0,y_0,z_0)=(0.1)*f(0,1,0)=(0.1)*(0)=0l_1=hg(x_0,y_0,z_0)=(0.1)*g(0,1,0)=(0.1)*(1)=0.1k_2=hf(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*f(0.05,1,0.05)=(0.1)*(0.05)=0.005l_2=hg(x_0+h/2,y_0+k_1/2,z_0+l_1/2)=(0.1)*g(0.05,1,0.05)=(0.1)*(1.09988)=0.10999y_1=y_0+k_2=1+0.005=1.005:.y(0.1)=1.005 :.y(0.1)=1.005
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|