4. Formula-2 & Example-1
Formula
2. Second order R-K method
Method-1 :
`k_1=f(x_0,y_0,z_0)`
`l_1=g(x_0,y_0,z_0)`
`k_2=f(x_0+h,y_0+hk_1,z_0+hl_1)`
`l_2=g(x_0+h,y_0+hk_1,z_0+hl_1)`
`y_1=y_0+(h(k_1+k_2))/2`
Method-2 :
`k_1=f(x_0,y_0,z_0)`
`l_1=g(x_0,y_0,z_0)`
`k_2=f(x_0+h/2,y_0+(hk_1)/2,z_0+(hl_1)/2)`
`l_2=g(x_0+h/2,y_0+(hk_1)/2,z_0+(hl_1)/2)`
`y_1=y_0+hk_2`
|
Examples
Find y(0.1) for `y''=1+2xy-x^2z`, `x_0=0, y_0=1, z_0=0`, with step length 0.1 using Runge-Kutta 2 method (2nd order derivative)
Solution: Given `y^('')=1+2xy-x^2z, y(0)=1, y'(0)=0, h=0.1, y(0.1)=?`
put `(dy)/(dx)=z` and differentiate w.r.t. x, we obtain `(d^2y)/(dx^2)=(dz)/(dx)`
We have system of equations `(dy)/(dx)=z=f(x,y,z)`
`(dz)/(dx)=1+2xy-x^2z=g(x,y,z)`
Method-1 : Using formula `k_2=f(x_0+h,y_0+hk_1,z_0+hl_1)`
Second order R-K method for second order differential equation `k_1=f(x_0,y_0,z_0)=f(0,1,0)=0`
`l_1=g(x_0,y_0,z_0)=g(0,1,0)=1`
`k_2=f(x_0+h,y_0+hk_1,z_0+hl_1)=f(0.1,1,0.1)=0.1`
`l_2=g(x_0+h,y_0+hk_1,z_0+hl_1)=g(0.1,1,0.1)=1.199`
`y_1=y_0+(h(k_1+k_2))/2=1+0.005=1.005`
`:.y(0.1)=1.005`
`:.y(0.1)=1.005`
Method-2 : Using formula `k_2=f(x_0+h/2,y_0+(hk_1)/2,z_0+(hl_1)/2)`
Second order R-K method for second order differential equation `k_1=f(x_0,y_0,z_0)=f(0,1,0)=0`
`l_1=g(x_0,y_0,z_0)=g(0,1,0)=1`
`k_2=f(x_0+h/2,y_0+(hk_1)/2,z_0+(hl_1)/2)=f(0.05,1,0.05)=0.05`
`l_2=g(x_0+h/2,y_0+(hk_1)/2,z_0+(hl_1)/2)=g(0.05,1,0.05)=1.09988`
`y_1=y_0+hk_2=1+0.005=1.005`
`:.y(0.1)=1.005`
`:.y(0.1)=1.005`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|