5. Example-2
Find y(0.2) for y′′=xz2-y2, x0=0,y0=1,z0=0, with step length 0.2 using Runge-Kutta 4 method (2nd order derivative) Solution:Given y′′=xz2-y2,y(0)=1,y′(0)=0,h=0.2,y(0.2)=?put dydx=z and differentiate w.r.t. x, we obtain d2ydx2=dzdxWe have system of equations dydx=z=f(x,y,z)dzdx=xz2-y2=g(x,y,z)Forth order R-K method for second order differential equation k1=f(x0,y0,z0)=f(0,1,0)=0l1=g(x0,y0,z0)=g(0,1,0)=-1k2=f(x0+h2,y0+hk12,z0+hl12)=f(0.1,1,-0.1)=-0.1l2=g(x0+h2,y0+hk12,z0+hl12)=g(0.1,1,-0.1)=-0.999k3=f(x0+h2,y0+hk22,z0+hl22)=f(0.1,0.99,-0.0999)=-0.0999l3=g(x0+h2,y0+hk22,z0+hl22)=g(0.1,0.99,-0.0999)=-0.9791k4=f(x0+h,y0+hk3,z0+hl3)=f(0.2,0.98002,-0.19582)=-0.19582l4=g(x0+h,y0+hk3,z0+hl3)=g(0.2,0.98002,-0.19582)=-0.95277Now, y1=y0+h6(k1+2k2+2k3+k4)y1=1+0.26[0+2(-0.1)+2(-0.0999)+(-0.19582)]y1=0.98015:.y(0.2)=0.98015 :.y(0.2)=0.98015
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|