Home > Statistical Methods calculators > Simple Moving Average forecast example

5. Simple Moving Average forecast example ( Enter your problem )
  1. Formula & 3 year Simple Moving Average forecast Example
  2. 4 year Simple Moving Average forecast Example
  3. 5 year Simple Moving Average forecast Example
Other related methods
  1. Simple Moving Average
  2. Weighted Moving Average
  3. Exponential Moving Average
  4. Single Exponential Smoothing
  5. Simple Moving Average forecast
  6. Weighted Moving Average forecast
  7. Exponential Moving Average forecast
  8. Single Exponential Smoothing forecast

1. Formula & 3 year Simple Moving Average forecast Example
(Previous example)
3. 5 year Simple Moving Average forecast Example
(Next example)

2. 4 year Simple Moving Average forecast Example





1) 4 year Simple Moving Average forecast
year12345678910
Sales20212322252427262830
Calculate 4 year Simple Moving Average forecast


Solution:
The value of table for `x` and `y`

x12345678910
y20212322252427262830

Calculation of 4 year moving averages of the data
(1)
year
(2)
Sales
(3)
4 year moving total
(4)
4 year moving average
`(3)-:4`
(5)
2 item moving total of
column (4)
(6)
4 year centered moving average
`(5)-:2`
120
221
`20+21+23+22=86``86-:4=21.5`
323`21.5+22.75=44.25``44.25-:2=22.125`
`21+23+22+25=91``91-:4=22.75`
422`22.75+23.5=46.25``46.25-:2=23.125`
`23+22+25+24=94``94-:4=23.5`
525`23.5+24.5=48``48-:2=24`
`22+25+24+27=98``98-:4=24.5`
624`24.5+25.5=50``50-:2=25`
`25+24+27+26=102``102-:4=25.5`
727`25.5+26.25=51.75``51.75-:2=25.875`
`24+27+26+28=105``105-:4=26.25`
826`26.25+27.75=54``54-:2=27`
`27+26+28+30=111``111-:4=27.75`
928
1030


(1)
year
(2)
Sales
(3)
4 year moving average
(4)
Error
(5)
|Error|
(6)
`"Error"^2`
(7)
`|%"Error"|`
120
221
323
422
52522.125`25-22.125=2.875``2.875``8.2656``11.5%`
62423.125`24-23.125=0.875``0.875``0.7656``3.65%`
72724`27-24=3``3``9``11.11%`
82625`26-25=1``1``1``3.85%`
92825.875`28-25.875=2.125``2.125``4.5156``7.59%`
103027`30-27=3``3``9``10%`
110Total`12.875``32.5469``47.69%`


Forecasting errors

1. Mean absolute error (MAE), also called mean absolute deviation (MAD)
MAE`=1/n sum |e_i|=12.875/6=2.1458`


2. Mean squared error (MSE)
MSE`=1/n sum |e_i^2|=32.5469/6=5.4245`


3. Root mean squared error (RMSE)
RMSE`=sqrt(MSE)=sqrt(5.4245)=2.3291`


4. Mean absolute percentage error (MAPE)
MAPE`=1/n sum |e_i/y_i|=47.69/6=7.95`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & 3 year Simple Moving Average forecast Example
(Previous example)
3. 5 year Simple Moving Average forecast Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.