1. Find Derivative of `y=2*x^3-2x^2-5x+4`
Solution:
`d/(dx)(2x^(3)-2x^(2)-5x+4)`
`=d/(dx)(2x^(3))-d/(dx)(2x^(2))-d/(dx)(5x)+d/(dx)(4)`
`=6x^(2)-4x-5+0`
`=6x^(2)-4x-5`
2. Find Derivative of `y=log(x)e^x`
Solution:
`d/(dx)(log(x)e^(x))`
`=d/(dx)(log(x))e^(x)+log(x)d/(dx)(e^(x))`
`=(1/(x))e^(x)+log(x)(e^(x))`
`=(e^(x))/(x)+log(x)e^(x)`
`=e^(x)(1/(x)+log(x))`
`=(e^(x)(1+log(x)x))/(x)`
3. Find Derivative of `y=3cos(sin(x))`
Solution:
`d/(dx)(3cos(sin(x)))`
`=-3sin(sin(x))d/(dx)(sin(x))`
`=-3sin(sin(x))cos(x)`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then