Home > Algebra calculators > Verifying if two functions are inverses of each other example

Verifying if two functions are inverses of each other example ( Enter your problem )
  1. Examples
Other related methods
  1. Functions - Find Range of f:A->B
  2. Composite functions and Evaluating functions fog(x), f(2)
  3. If f(x)=x(x+1) find f(x)-f(x-1)
  4. Verifying if two functions are inverses of each other

3. If f(x)=x(x+1) find f(x)-f(x-1)
(Previous method)

1. Examples





1. Verifying if two functions f,g are inverses of each other
f(x)=x+3. g(x)=x-3.


Solution:
Two functions f,g are inverses of each other only when 1. `f(g(x))=x` and 2. `g(f(x))=x`

1. Show that f(g(x))=x
`f(x)=x+3`

`g(x)=x-3`

`fog(x)=?`

`f(x)=x+3, g(x)=x-3, fog(x)=?`

`fog(x)=f(g(x))`

`=f(x-3)`

`=(x-3)+3`

`=x-3+3`

`=x`

`fog(x)=x`

2. Show that g(f(x))=x
`f(x)=x+3, g(x)=x-3, gof(x)=?`

`gof(x)=g(f(x))`

`=g(x+3)`

`=(x+3)-3`

`=x+3-3`

`=x`

`gof(x)=x`

Here both outputs are x, So f(x) and g(x) are inverses of each other


2. Verifying if two functions f,g are inverses of each other
f(x)=4x-3. g(x)=(x+3)/4.


Solution:
Two functions f,g are inverses of each other only when 1. `f(g(x))=x` and 2. `g(f(x))=x`

1. Show that f(g(x))=x
`f(x)=4x-3`

`g(x)=(x+3)/4`

`fog(x)=?`

`f(x)=4x-3, g(x)=(x+3)/4, fog(x)=?`

`fog(x)=f(g(x))`

`=f((x+3)/4)`

`=4*((x+3)/4)-3`

`=x+3-3`

`=x`

`fog(x)=x`

2. Show that g(f(x))=x
`f(x)=4x-3, g(x)=(x+3)/4, gof(x)=?`

`gof(x)=g(f(x))`

`=g(4x-3)`

`=((4x-3)+3)/4`

`=(4x)/4`

`=x`

`gof(x)=x`

Here both outputs are x, So f(x) and g(x) are inverses of each other


3. Verifying if two functions f,g are inverses of each other
f(x)=x/(x-1). g(x)=(2x)/(2x-1).


Solution:
Two functions f,g are inverses of each other only when 1. `f(g(x))=x` and 2. `g(f(x))=x`

1. Show that f(g(x))=x
`f(x)=x/(x-1)`

`g(x)=(2x)/(2x-1)`

`fog(x)=?`

`f(x)=x/(x-1), g(x)=(2x)/(2x-1), fog(x)=?`

`fog(x)=f(g(x))`

`=f((2x)/(2x-1))`

`=((2x)/(2x-1))/(((2x)/(2x-1))-1)`

`=((2x)/(2x-1))/((2x)/(2x-1)-1)`

`=(2x)/((2x-1)((2x)/(2x-1)-1))`

`=(2x)/((2x-1)((2x-(2x-1))/(2x-1)))`

`=(2x)/((2x-1)(1/(2x-1)))`

`=2x`

`fog(x)=2x`

The simplified answer is not `x`, So there is no need to do Step 2.

So we conclude f(x) and g(x) are not inverses of each other.





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. If f(x)=x(x+1) find f(x)-f(x-1)
(Previous method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.