Home > Algebra calculators > Intercept of a function example

9. Intercept of a function example ( Enter your problem )
  1. `y=x^2+3x-4` Example-1
  2. `y=(x+2)^2-9` Example-2
  3. `y=3x^2+6x-1` Example-3
  4. `y=3(x+1)^2-4` Example-4
Other related methods
  1. Domain of a function
  2. Range of a function
  3. Inverse of a function
  4. Properties of a function
  5. Parabola Vertex of a function
  6. Parabola focus
  7. axis symmetry of a parabola
  8. Parabola Directrix
  9. Intercept of a function
  10. Parity of a function
  11. Asymptotes of a function

2. `y=(x+2)^2-9` Example-2
(Previous example)
4. `y=3(x+1)^2-4` Example-4
(Next example)

3. `y=3x^2+6x-1` Example-3





`y=3x^2+6x-1`, find Intercept of a function

Solution:
`y=3x^2+6x-1`

1. Intercepts :
Intercept :
To find the y-intercept put x=0 in `y=3x^2+6x-1`, we get

`y=3(0)^2+6(0)-1=-1`

`:.` y-intercept is `(0,-1)`


To find the x-intercept put y=0 in `y=3x^2+6x-1`, we get

`=>3x^2+6x-1=0`

factor is not possible for equation `3x^2+6x-1=0`

But we are trying find solution using the method of perfect square.

Comparing the given equation with the standard quadratic equation `ax^2+bx+c=0,`

we get, `a=3, b=6, c=-1.`

`:. Delta=b^2-4ac`

`=(6)^2-4 (3) (-1)`

`=36+12`

`=48`

`:. sqrt(Delta)=sqrt(48)=4sqrt(3)`



Now, `alpha=(-b+sqrt(Delta))/(2a)`

`=(-(6)+4sqrt(3))/(2*3)`

`=(-6+4sqrt(3))/6`

`=(-3+2sqrt(3))/3`



and, `beta=(-b-sqrt(Delta))/(2a)`

`=(-(6)-4sqrt(3))/(2*3)`

`=(-6-4sqrt(3))/6`

`=(-3-2sqrt(3))/3`


`=>x = (-3+2sqrt(3))/3" or "x = (-3-2sqrt(3))/3`

`:.` x-intercepts are `((-3+2sqrt(3))/3,0)` and `((-3-2sqrt(3))/3,0)`

`:.` x-intercepts are `(0.1547,0)` and `(-2.1547,0)`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. `y=(x+2)^2-9` Example-2
(Previous example)
4. `y=3(x+1)^2-4` Example-4
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.