2. y=(x+2)2-9, find Properties of a functionSolution:y=(x+2)2-91. Vertex : :. y=1(x-(-2))^2+(-9)Now compare with
y=a(x-h)^2+k, we get
a=1,h=-2,k=-9Vertex
=(h,k)=(-2,-9)If
a<0 then the vertex is a maximum value
If
a>0 then the vertex is a minimum value
Here
a=1>0So minimum Vertex =
(h,k)=(-2,-9)2. Focus : Find
p, distance from the vertex to a focus of the parabola
p=1/(4a)=1/(4*1)=1/4Focus
=(h,k+p)=(-2,-9+1/4)=(-2,-35/4)3. Symmetry : Axis of symmetry is the line that passes through the vertex and the focus
x=h=-24. Directrix : Directrix
y=k-p=-9-1/4=-37/45. Graph : some extra points to plot the graph
y=f(x)=(x+2)^2-9f(-6)=(-6+2)^2-9=16-9=7f(-5)=(-5+2)^2-9=9-9=0f(-4)=(-4+2)^2-9=4-9=-5f(-3)=(-3+2)^2-9=1-9=-8f(-2)=(-2+2)^2-9=0-9=-9f(-1)=(-1+2)^2-9=1-9=-8f(0)=(0+2)^2-9=4-9=-5f(1)=(1+2)^2-9=9-9=0f(2)=(2+2)^2-9=16-9=7graph
6. Intercepts : Intercept :
To find the y-intercept put x=0 in
y=(x+2)^2-9, we get
y=(0+2)^2-9=4-9=-5:. y-intercept is
(0,-5)To find the x-intercept put y=0 in
y=(x+2)^2-9, we get
=>(x+2)^2-9=0=>(x+2)^2=0+9=>(x+2)^2=9=>x+2=+- 3Now,
x+2=3=>x=3-2=>x=1Now,
x+2=-3=>x=-3-2=>x=-5:. x-intercepts are
(1,0) and
(-5,0)
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then