1. Determine whether the system of linear equations 2x+y+z=5,3x+5y+2z=15,2x+y+4z=8 is inconsistentSolution:Here
2x+y+z=5 3x+5y+2z=15 2x+y+4z=8=2×(5×4-2×1)-1×(3×4-2×2)+1×(3×1-5×2)=2×(20-2)-1×(12-4)+1×(3-10)=2×(18)-1×(8)+1×(-7)=36-8-7=21=5×(5×4-2×1)-1×(15×4-2×8)+1×(15×1-5×8)=5×(20-2)-1×(60-16)+1×(15-40)=5×(18)-1×(44)+1×(-25)=90-44-25=21=2×(15×4-2×8)-5×(3×4-2×2)+1×(3×8-15×2)=2×(60-16)-5×(12-4)+1×(24-30)=2×(44)-5×(8)+1×(-6)=88-40-6=42=2×(5×8-15×1)-1×(3×8-15×2)+5×(3×1-5×2)=2×(40-15)-1×(24-30)+5×(3-10)=2×(25)-1×(-6)+5×(-7)=50+6-35=21Here
D=21,D1=21,D2=42,D3=21Here,
D≠0Hence, given system has unique solution (System of equation is consistent)
2. Determine whether the system of linear equations 2x+5y=16,4x+10y=32 is inconsistentSolution:Here
2x+5y=16 4x+10y=32Comparing
2x+5y=16 with
a1x+b1y+c1=0we get
a1=2,b1=5,c1=-16Comparing
4x+10y=32 with
a2x+b2y+c2=0we get
a2=4,b2=10,c2=-32a1a2=24=12b1b2=510=12c1c2=1632=12a1a2=b1b2=c1c2So the given system has infinite solution (System of equation is consistent)
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then