Determine whether the system of linear equations has No solution example ( Enter your problem )
  1. Examples
Other related methods
  1. Find the value of h,k for which the system of equations has a Unique solution
  2. Find the value of h,k for which the system of equations has Infinite solution
  3. Find the value of h,k for which the system of equations has No solution
  4. Find the value of h,k for which the system of equations is consistent
  5. Find the value of h,k for which the system of equations is inconsistent
  6. Determine whether the system of linear equations has a Unique solution
  7. Determine whether the system of linear equations has Infinite solution
  8. Determine whether the system of linear equations has No solution
  9. Determine whether the system of linear equations is consistent
  10. Determine whether the system of linear equations is inconsistent

7. Determine whether the system of linear equations has Infinite solution
(Previous method)
9. Determine whether the system of linear equations is consistent
(Next method)

1. Examples





1. Determine whether the system of linear equations x+y+z=3,2x-y-z=3,x-y+z=9 has No solution

Solution:
Here `x+y+z=3`
`2x-y-z=3`
`x-y+z=9`

`|D|` = 
 `1`  `1`  `1` 
 `2`  `-1`  `-1` 
 `1`  `-1`  `1` 


 =
 `1` × 
 `-1`  `-1` 
 `-1`  `1` 
 `-1` × 
 `2`  `-1` 
 `1`  `1` 
 `+1` × 
 `2`  `-1` 
 `1`  `-1` 


`=1 xx (-1 × 1 - (-1) × (-1)) -1 xx (2 × 1 - (-1) × 1) +1 xx (2 × (-1) - (-1) × 1)`

`=1 xx (-1 -1) -1 xx (2 +1) +1 xx (-2 +1)`

`=1 xx (-2) -1 xx (3) +1 xx (-1)`

`= -2 -3 -1`

`=-6`


`|D_1|` = 
 `3`  `1`  `1` 
 `3`  `-1`  `-1` 
 `9`  `-1`  `1` 


 =
 `3` × 
 `-1`  `-1` 
 `-1`  `1` 
 `-1` × 
 `3`  `-1` 
 `9`  `1` 
 `+1` × 
 `3`  `-1` 
 `9`  `-1` 


`=3 xx (-1 × 1 - (-1) × (-1)) -1 xx (3 × 1 - (-1) × 9) +1 xx (3 × (-1) - (-1) × 9)`

`=3 xx (-1 -1) -1 xx (3 +9) +1 xx (-3 +9)`

`=3 xx (-2) -1 xx (12) +1 xx (6)`

`= -6 -12 +6`

`=-12`


`|D_2|` = 
 `1`  `3`  `1` 
 `2`  `3`  `-1` 
 `1`  `9`  `1` 


 =
 `1` × 
 `3`  `-1` 
 `9`  `1` 
 `-3` × 
 `2`  `-1` 
 `1`  `1` 
 `+1` × 
 `2`  `3` 
 `1`  `9` 


`=1 xx (3 × 1 - (-1) × 9) -3 xx (2 × 1 - (-1) × 1) +1 xx (2 × 9 - 3 × 1)`

`=1 xx (3 +9) -3 xx (2 +1) +1 xx (18 -3)`

`=1 xx (12) -3 xx (3) +1 xx (15)`

`= 12 -9 +15`

`=18`


`|D_3|` = 
 `1`  `1`  `3` 
 `2`  `-1`  `3` 
 `1`  `-1`  `9` 


 =
 `1` × 
 `-1`  `3` 
 `-1`  `9` 
 `-1` × 
 `2`  `3` 
 `1`  `9` 
 `+3` × 
 `2`  `-1` 
 `1`  `-1` 


`=1 xx (-1 × 9 - 3 × (-1)) -1 xx (2 × 9 - 3 × 1) +3 xx (2 × (-1) - (-1) × 1)`

`=1 xx (-9 +3) -1 xx (18 -3) +3 xx (-2 +1)`

`=1 xx (-6) -1 xx (15) +3 xx (-1)`

`= -6 -15 -3`

`=-24`


Here `D=-6,D_1=-12,D_2=18,D_3=-24`

Here, `D!=0`

Hence, given system has unique solution (System of equation is consistent)
2. Determine whether the system of linear equations 2x+5y=16,4x+10y=20 has No solution

Solution:
Here `2x+5y=16`
`4x+10y=20`

Comparing `2x+5y=16` with `a_1x+b_1y+c_1=0`

we get `a_1=2,b_1=5,c_1=-16`

Comparing `4x+10y=20` with `a_2x+b_2y+c_2=0`

we get `a_2=4,b_2=10,c_2=-20`

`a_1/a_2=(2)/(4)=1/2`

`b_1/b_2=(5)/(10)=1/2`

`c_1/c_2=(16)/(20)=4/5`

`a_1/a_2=b_1/b_2!=c_1/c_2`

So the given system has no solution (System of equation is inconsistent)


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



7. Determine whether the system of linear equations has Infinite solution
(Previous method)
9. Determine whether the system of linear equations is consistent
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.