Home > Algebra calculators > Cramer's Rule method example

7. Cramer's Rule Method example ( Enter your problem )
  1. Examples
Other related methods
  1. Substitution method
  2. Elimination method
  3. Cross Multiplication method
  4. Addition-Substraction method
  5. Graphical method
  6. Inverse matrix method
  7. Cramer's Rule method

6. Inverse matrix method
(Previous method)

1. Examples





1. Solve linear equations x+y=2 and 2x+3y=4 using Cramer's Rule Method

Solution:
The equations can be expressed as
x+y-2=0

2x+3y-4=0

Use Cramer's Rule to find the values of x, y, z.
xDx=-yDy=1D

Dx = 
 1  -2 
 3  -4 


=1×(-4)-(-2)×3

=-4+6

=2


Dy = 
 1  -2 
 2  -4 


=1×(-4)-(-2)×2

=-4+4

=0


D = 
 1  1 
 2  3 


=1×3-1×2

=3-2

=1


xDx=-yDy=1D

:.(x)/2=(-y)/0=(1)/1

:.(x)/2=(1)/1,(-y)/0=(1)/1

:.x=(2)/(1),y=(0)/(1)

:.x=2,y=0


2. Solve linear equations 2x+7y-11=0 and 3x-y-5=0 using Cramer's Rule Method

Solution:
The equations can be expressed as
2x+7y-11=0

3x-y-5=0

Use Cramer's Rule to find the values of x, y, z.
(x)/D_x=(-y)/D_y=(1)/D

D_x = 
 7  -11 
 -1  -5 


=7 × (-5) - (-11) × (-1)

=-35 -11

=-46


D_y = 
 2  -11 
 3  -5 


=2 × (-5) - (-11) × 3

=-10 +33

=23


D = 
 2  7 
 3  -1 


=2 × (-1) - 7 × 3

=-2 -21

=-23


(x)/D_x=(-y)/D_y=(1)/D

:.(x)/-46=(-y)/23=(1)/-23

:.(x)/-46=(1)/-23,(-y)/23=(1)/-23

:.x=(-46)/(-23),y=(-23)/(-23)

:.x=2,y=1


3. Solve linear equations 3x-y=3 and 7x+2y=20 using Cramer's Rule Method

Solution:
The equations can be expressed as
3x-y-3=0

7x+2y-20=0

Use Cramer's Rule to find the values of x, y, z.
(x)/D_x=(-y)/D_y=(1)/D

D_x = 
 -1  -3 
 2  -20 


=-1 × (-20) - (-3) × 2

=20 +6

=26


D_y = 
 3  -3 
 7  -20 


=3 × (-20) - (-3) × 7

=-60 +21

=-39


D = 
 3  -1 
 7  2 


=3 × 2 - (-1) × 7

=6 +7

=13


(x)/D_x=(-y)/D_y=(1)/D

:.(x)/26=(-y)/-39=(1)/13

:.(x)/26=(1)/13,(-y)/-39=(1)/13

:.x=(26)/(13),y=(39)/(13)

:.x=2,y=3


4. Solve linear equations 2x-y=11 and 5x+4y=1 using Cramer's Rule Method

Solution:
The equations can be expressed as
2x-y-11=0

5x+4y-1=0

Use Cramer's Rule to find the values of x, y, z.
(x)/D_x=(-y)/D_y=(1)/D

D_x = 
 -1  -11 
 4  -1 


=-1 × (-1) - (-11) × 4

=1 +44

=45


D_y = 
 2  -11 
 5  -1 


=2 × (-1) - (-11) × 5

=-2 +55

=53


D = 
 2  -1 
 5  4 


=2 × 4 - (-1) × 5

=8 +5

=13


(x)/D_x=(-y)/D_y=(1)/D

:.(x)/45=(-y)/53=(1)/13

:.(x)/45=(1)/13,(-y)/53=(1)/13

:.x=(45)/(13),y=(-53)/(13)

:.x=45/13,y=-53/13





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Inverse matrix method
(Previous method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.