Find LU decomposition using Crout's method of Matrix ...
[324202423]Solution:Crout's method for LU decomposition
Let
A=LU | = | | l11 | l11u12 | l11u13 | | | l21 | l21u12+l22 | l21u13+l22u23 | | | l31 | l31u12+l32 | l31u13+l32u23+l33 | |
|
This implies
l11=3l11u12=2⇒3×u12=2⇒u12=23l11u13=4⇒3×u13=4⇒u13=43l21=2l21u12+l22=0⇒2×23+l22=0⇒l22=-43l21u13+l22u23=2⇒2×43+(-43)×u23=2⇒u23=12l31=4l31u12+l32=2⇒4×23+l32=2⇒l32=-23l31u13+l32u23+l33=3⇒4×43+(-23)×12+l33=3⇒l33=-2∴A=L×U=LU
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then