2. Example [10100101]
Find Singular Value Decomposition (SVD) of a Matrix ... [10100101]Solution:A⋅A′= | | 1×1+0×0+1×1+0×0 | 1×0+0×1+1×0+0×1 | | | 0×1+1×0+0×1+1×0 | 0×0+1×1+0×0+1×1 | |
|
= | | 1+0+1+0 | 0+0+0+0 | | | 0+0+0+0 | 0+1+0+1 | |
|
Find Eigen vector for A⋅A′|A⋅A′-λI|=0∴(2-λ)×(2-λ)-0×0=0∴(4-4λ+λ2)-0=0∴(λ2-4λ+4)=0∴(λ-2)(λ-2)=0∴(λ-2)=0or(λ-2)=0∴ The eigenvalues of the matrix A are given by λ=2,2, 1. Eigenvectors for λ=2
1. Eigenvectors for λ=2Now, reduce this matrix The system associated with the eigenvalue λ=2⇒∴ eigenvectors corresponding to the eigenvalue λ=2 is Let x1=1,x2=0Let x1=0,x2=1For Eigenvector-1 (1,0), Length L = √12+02=1So, normalizing gives u1=(11,01)=(1,0) For Eigenvector-2 (0,1), Length L = √02+12=1So, normalizing gives u2=(01,11)=(0,1)
A′⋅A= | | 1×1+0×0 | 1×0+0×1 | 1×1+0×0 | 1×0+0×1 | | | 0×1+1×0 | 0×0+1×1 | 0×1+1×0 | 0×0+1×1 | | | 1×1+0×0 | 1×0+0×1 | 1×1+0×0 | 1×0+0×1 | | | 0×1+1×0 | 0×0+1×1 | 0×1+1×0 | 0×0+1×1 | |
|
= | | 1+0 | 0+0 | 1+0 | 0+0 | | | 0+0 | 0+1 | 0+0 | 0+1 | | | 1+0 | 0+0 | 1+0 | 0+0 | | | 0+0 | 0+1 | 0+0 | 0+1 | |
|
Find Eigen vector for A′⋅A|A′⋅A-λI|=0 | (1-λ) | 0 | 1 | 0 | | | 0 | (1-λ) | 0 | 1 | | | 1 | 0 | (1-λ) | 0 | | | 0 | 1 | 0 | (1-λ) | |
| = 0 | ∴(1-λ)×|(1-λ)010(1-λ)010(1-λ)|+0×|0011(1-λ)000(1-λ)|+1×|0(1-λ)110001(1-λ)|+0×|0(1-λ)010(1-λ)010|=0∴(1-λ)×(-2λ+3λ2-λ3)+0×(0)+1×(2λ-λ2)+0×(0)=0∴(-2λ+5λ2-4λ3+λ4)+0+(2λ-λ2)+0=0∴(λ4-4λ3+4λ2)=0∴λ2(λ-2)(λ-2)=0∴λ2=0or(λ-2)=0or(λ-2)=0∴ The eigenvalues of the matrix A are given by λ=0,0,2,2, 1. Eigenvectors for λ=2
1. Eigenvectors for λ=2Now, reduce this matrix R1←R1÷-1 = | | 1 1=-1÷-1 R1←R1÷-1 | 0 0=0÷-1 R1←R1÷-1 | -1 -1=1÷-1 R1←R1÷-1 | 0 0=0÷-1 R1←R1÷-1 | | | 0 | -1 | 0 | 1 | | | 1 | 0 | -1 | 0 | | | 0 | 1 | 0 | -1 | |
| R3←R3-R1 = | | 1 | 0 | -1 | 0 | | | 0 | -1 | 0 | 1 | | | 0 0=1-1 R3←R3-R1 | 0 0=0-0 R3←R3-R1 | 0 0=-1--1 R3←R3-R1 | 0 0=0-0 R3←R3-R1 | | | 0 | 1 | 0 | -1 | |
| R2←R2÷-1 = | | 1 | 0 | -1 | 0 | | | 0 0=0÷-1 R2←R2÷-1 | 1 1=-1÷-1 R2←R2÷-1 | 0 0=0÷-1 R2←R2÷-1 | -1 -1=1÷-1 R2←R2÷-1 | | | 0 | 0 | 0 | 0 | | | 0 | 1 | 0 | -1 | |
| R4←R4-R2 = | | 1 | 0 | -1 | 0 | | | 0 | 1 | 0 | -1 | | | 0 | 0 | 0 | 0 | | | 0 0=0-0 R4←R4-R2 | 0 0=1-1 R4←R4-R2 | 0 0=0-0 R4←R4-R2 | 0 0=-1--1 R4←R4-R2 | |
|
The system associated with the eigenvalue λ=2⇒x1-x3=0,x2-x4=0⇒x1=x3,x2=x4∴ eigenvectors corresponding to the eigenvalue λ=2 is Let x3=1,x4=0Let x3=0,x4=13. Eigenvectors for λ=0
3. Eigenvectors for λ=0Now, reduce this matrix R3←R3-R1 = | | 1 | 0 | 1 | 0 | | | 0 | 1 | 0 | 1 | | | 0 0=1-1 R3←R3-R1 | 0 0=0-0 R3←R3-R1 | 0 0=1-1 R3←R3-R1 | 0 0=0-0 R3←R3-R1 | | | 0 | 1 | 0 | 1 | |
| R4←R4-R2 = | | 1 | 0 | 1 | 0 | | | 0 | 1 | 0 | 1 | | | 0 | 0 | 0 | 0 | | | 0 0=0-0 R4←R4-R2 | 0 0=1-1 R4←R4-R2 | 0 0=0-0 R4←R4-R2 | 0 0=1-1 R4←R4-R2 | |
|
The system associated with the eigenvalue λ=0⇒x1+x3=0,x2+x4=0⇒x1=-x3,x2=-x4∴ eigenvectors corresponding to the eigenvalue λ=0 is Let x3=1,x4=0Let x3=0,x4=1For Eigenvector-1 (1,0,1,0), Length L = √12+02+12+02=1.41421So, normalizing gives v1=(11.41421,01.41421,11.41421,01.41421)=(0.7071,0,0.7071,0) For Eigenvector-2 (0,1,0,1), Length L = √02+12+02+12=1.41421So, normalizing gives v2=(01.41421,11.41421,01.41421,11.41421)=(0,0.7071,0,0.7071) For Eigenvector-3 (-1,0,1,0), Length L = √(-1)2+02+12+02=1.41421So, normalizing gives v3=(-11.41421,01.41421,11.41421,01.41421)=(-0.7071,0,0.7071,0) For Eigenvector-4 (0,-1,0,1), Length L = √02+(-1)2+02+12=1.41421So, normalizing gives v4=(01.41421,-11.41421,01.41421,11.41421)=(0,-0.7071,0,0.7071) 1st Solution V is found using formula v_i=1/sigma_i A^T*u_i:. V = | | 0.70711 | 0 | -0.70711 | 0 | | | 0 | 0.70711 | 0 | -0.70711 | | | 0.70711 | 0 | 0.70711 | 0 | | | 0 | 0.70711 | 0 | 0.70711 | |
| Or2^"nd" Solution :. V = | [v_1,v_2,v_3,v_4] | = | | 0.70711 | 0 | -0.70711 | 0 | | | 0 | 0.70711 | 0 | -0.70711 | | | 0.70711 | 0 | 0.70711 | 0 | | | 0 | 0.70711 | 0 | 0.70711 | |
| U is found using formula u_i=1/sigma_i A*v_iVerify 1^"st" Solution A = U Sigma V^T= | | 1×1.4142+0×0 | 1×0+0×1.4142 | 1×0+0×0 | 1×0+0×0 | | | 0×1.4142+1×0 | 0×0+1×1.4142 | 0×0+1×0 | 0×0+1×0 | |
|
= | | 1.4142+0 | 0+0 | 0+0 | 0+0 | | | 0+0 | 0+1.4142 | 0+0 | 0+0 | |
|
(U × Sigma)×(V^T) | = | | × | | 0.7071 | 0 | 0.7071 | 0 | | | 0 | 0.7071 | 0 | 0.7071 | | | -0.7071 | 0 | 0.7071 | 0 | | | 0 | -0.7071 | 0 | 0.7071 | |
|
= | | 1.4142×0.7071+0×0+0×-0.7071+0×0 | 1.4142×0+0×0.7071+0×0+0×-0.7071 | 1.4142×0.7071+0×0+0×0.7071+0×0 | 1.4142×0+0×0.7071+0×0+0×0.7071 | | | 0×0.7071+1.4142×0+0×-0.7071+0×0 | 0×0+1.4142×0.7071+0×0+0×-0.7071 | 0×0.7071+1.4142×0+0×0.7071+0×0 | 0×0+1.4142×0.7071+0×0+0×0.7071 | |
|
= | | 1+0+0+0 | 0+0+0+0 | 1+0+0+0 | 0+0+0+0 | | | 0+0+0+0 | 0+1+0+0 | 0+0+0+0 | 0+1+0+0 | |
|
Verify 2^"nd" Solution A = U Sigma V^T= | | 1×1.4142+0×0 | 1×0+0×1.4142 | 1×0+0×0 | 1×0+0×0 | | | 0×1.4142+1×0 | 0×0+1×1.4142 | 0×0+1×0 | 0×0+1×0 | |
|
= | | 1.4142+0 | 0+0 | 0+0 | 0+0 | | | 0+0 | 0+1.4142 | 0+0 | 0+0 | |
|
(U × Sigma)×(V^T) | = | | × | | 0.7071 | 0 | 0.7071 | 0 | | | 0 | 0.7071 | 0 | 0.7071 | | | -0.7071 | 0 | 0.7071 | 0 | | | 0 | -0.7071 | 0 | 0.7071 | |
|
= | | 1.4142×0.7071+0×0+0×-0.7071+0×0 | 1.4142×0+0×0.7071+0×0+0×-0.7071 | 1.4142×0.7071+0×0+0×0.7071+0×0 | 1.4142×0+0×0.7071+0×0+0×0.7071 | | | 0×0.7071+1.4142×0+0×-0.7071+0×0 | 0×0+1.4142×0.7071+0×0+0×-0.7071 | 0×0.7071+1.4142×0+0×0.7071+0×0 | 0×0+1.4142×0.7071+0×0+0×0.7071 | |
|
= | | 1+0+0+0 | 0+0+0+0 | 1+0+0+0 | 0+0+0+0 | | | 0+0+0+0 | 0+1+0+0 | 0+0+0+0 | 0+1+0+0 | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example [[4,0],[3,-5]] (Previous example) | 3. Example [[1,1,1],[-1,-3,-3],[2,4,4]] (Next example) |
|