Quadratic Equation - Roots for non-zero denominator example ( Enter your problem )
  1. Example-1 : `(5X-18)/(X+2) = (2X-6)/(X-1)`
  2. Example-2 : `(x)/(x+1) + (x+1)/(x) = 5/2`
  3. Example-3 : `4((4x+1)/(4x-1))^(2) + (4x+1)/(4x-1) = 3`
  4. Example-4 : `(4x+1)/(4x-1) + (4x-1)/(4x+1) = 3`

1. Example-1 : `(5X-18)/(X+2) = (2X-6)/(X-1)`
(Previous example)
3. Example-3 : `4((4x+1)/(4x-1))^(2) + (4x+1)/(4x-1) = 3`
(Next example)

2. Example-2 : `(x)/(x+1) + (x+1)/(x) = 5/2`





2. Find roots of the equation `(X)/(X+1) + (X+1)/(X) = (5)/(2)`

` (X)/(X+1) + (X+1)/(X) = (5)/(2)`

` => (X)*(X)*(2) + (X+1)*(X+1)*(2) = (5)*(X+1)*(X)`

` => 2X^2 + (2X^2+4X+2) = (5X^2+5X)`

` => 2X^2 + (2X^2+4X+2) + (-5X^2-5X) = 0`

` => -X^2-X+2 = 0`

` => (-X^2-X+2) = 0`

` => -X^2-X+2 = 0`

` => (-1)(X^2+X-2) = 0`

` => (-1)(X^2-X+2X-2) = 0`

` => (-1)(X(X-1)+2(X-1)) = 0`

` => (-1)(X+2)(X-1) = 0`

` => (X+2) = 0" or "(X-1) = 0`

` => X = -2" or "X = 1`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example-1 : `(5X-18)/(X+2) = (2X-6)/(X-1)`
(Previous example)
3. Example-3 : `4((4x+1)/(4x-1))^(2) + (4x+1)/(4x-1) = 3`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.